mirror of
https://github.com/TomHarte/CLK.git
synced 2024-11-30 04:50:08 +00:00
758 lines
27 KiB
Plaintext
758 lines
27 KiB
Plaintext
//
|
|
// CSMachine.m
|
|
// Clock Signal
|
|
//
|
|
// Created by Thomas Harte on 04/01/2016.
|
|
// Copyright 2016 Thomas Harte. All rights reserved.
|
|
//
|
|
|
|
#import "CSMachine.h"
|
|
#import "CSMachine+Target.h"
|
|
|
|
#import "CSHighPrecisionTimer.h"
|
|
#include "CSROMFetcher.hpp"
|
|
#import "CSScanTarget+CppScanTarget.h"
|
|
|
|
#include "MediaTarget.hpp"
|
|
#include "JoystickMachine.hpp"
|
|
#include "KeyboardMachine.hpp"
|
|
#include "KeyCodes.h"
|
|
#include "MachineForTarget.hpp"
|
|
#include "StandardOptions.hpp"
|
|
#include "Typer.hpp"
|
|
#include "../../../../Activity/Observer.hpp"
|
|
|
|
#include "../../../../ClockReceiver/TimeTypes.hpp"
|
|
#include "../../../../ClockReceiver/ScanSynchroniser.hpp"
|
|
|
|
#import "CSStaticAnalyser+TargetVector.h"
|
|
#import "NSBundle+DataResource.h"
|
|
#import "NSData+StdVector.h"
|
|
|
|
#include <atomic>
|
|
#include <bitset>
|
|
#include <codecvt>
|
|
#include <locale>
|
|
|
|
@interface CSMachine() <CSScanTargetViewDisplayLinkDelegate>
|
|
- (void)speaker:(Outputs::Speaker::Speaker *)speaker didCompleteSamples:(const int16_t *)samples length:(int)length;
|
|
- (void)speakerDidChangeInputClock:(Outputs::Speaker::Speaker *)speaker;
|
|
- (void)addLED:(NSString *)led;
|
|
@end
|
|
|
|
struct LockProtectedDelegate {
|
|
// Contractual promise is: machine, the pointer **and** the object **, may be accessed only
|
|
// in sections protected by the machineAccessLock;
|
|
NSLock *machineAccessLock;
|
|
__unsafe_unretained CSMachine *machine;
|
|
};
|
|
|
|
struct SpeakerDelegate: public Outputs::Speaker::Speaker::Delegate, public LockProtectedDelegate {
|
|
void speaker_did_complete_samples(Outputs::Speaker::Speaker *speaker, const std::vector<int16_t> &buffer) final {
|
|
[machineAccessLock lock];
|
|
[machine speaker:speaker didCompleteSamples:buffer.data() length:(int)buffer.size()];
|
|
[machineAccessLock unlock];
|
|
}
|
|
void speaker_did_change_input_clock(Outputs::Speaker::Speaker *speaker) final {
|
|
[machineAccessLock lock];
|
|
[machine speakerDidChangeInputClock:speaker];
|
|
[machineAccessLock unlock];
|
|
}
|
|
};
|
|
|
|
struct ActivityObserver: public Activity::Observer {
|
|
void register_led(const std::string &name) final {
|
|
[machine addLED:[NSString stringWithUTF8String:name.c_str()]];
|
|
}
|
|
|
|
void set_led_status(const std::string &name, bool lit) final {
|
|
[machine.delegate machine:machine led:[NSString stringWithUTF8String:name.c_str()] didChangeToLit:lit];
|
|
}
|
|
|
|
void announce_drive_event(const std::string &name, DriveEvent) final {
|
|
[machine.delegate machine:machine ledShouldBlink:[NSString stringWithUTF8String:name.c_str()]];
|
|
}
|
|
|
|
__unsafe_unretained CSMachine *machine;
|
|
};
|
|
|
|
@implementation CSMachine {
|
|
SpeakerDelegate _speakerDelegate;
|
|
ActivityObserver _activityObserver;
|
|
NSLock *_delegateMachineAccessLock;
|
|
|
|
CSStaticAnalyser *_analyser;
|
|
std::unique_ptr<Machine::DynamicMachine> _machine;
|
|
MachineTypes::JoystickMachine *_joystickMachine;
|
|
|
|
CSJoystickManager *_joystickManager;
|
|
NSMutableArray<NSString *> *_leds;
|
|
|
|
CSHighPrecisionTimer *_timer;
|
|
std::atomic_flag _isUpdating;
|
|
Time::Nanos _syncTime;
|
|
Time::Nanos _timeDiff;
|
|
double _refreshPeriod;
|
|
BOOL _isSyncLocking;
|
|
|
|
Time::ScanSynchroniser _scanSynchroniser;
|
|
|
|
NSTimer *_joystickTimer;
|
|
|
|
// This array exists to reduce blocking on the main queue; anything that would otherwise need
|
|
// to synchronise on self in order to post input to the machine can instead synchronise on
|
|
// _inputEvents and add a block to it. The main machine execution loop promises to synchronise
|
|
// on _inputEvents very briefly at the start of every tick and execute all enqueued blocks.
|
|
NSMutableArray<dispatch_block_t> *_inputEvents;
|
|
}
|
|
|
|
- (instancetype)initWithAnalyser:(CSStaticAnalyser *)result missingROMs:(inout NSMutableString *)missingROMs {
|
|
self = [super init];
|
|
if(self) {
|
|
_analyser = result;
|
|
|
|
Machine::Error error;
|
|
ROM::Request missing_roms;
|
|
_machine.reset(Machine::MachineForTargets(_analyser.targets, CSROMFetcher(&missing_roms), error));
|
|
if(!_machine) {
|
|
std::wstring_convert<std::codecvt_utf8<wchar_t>> wstring_converter;
|
|
const std::wstring description = missing_roms.description(0, L'•');
|
|
[missingROMs appendString:[NSString stringWithUTF8String:wstring_converter.to_bytes(description).c_str()]];
|
|
return nil;
|
|
}
|
|
|
|
// Use the keyboard as a joystick if the machine has no keyboard, or if it has a 'non-exclusive' keyboard.
|
|
_inputMode =
|
|
(_machine->keyboard_machine() && _machine->keyboard_machine()->get_keyboard().is_exclusive())
|
|
? CSMachineKeyboardInputModeKeyboardPhysical : CSMachineKeyboardInputModeJoystick;
|
|
|
|
_leds = [[NSMutableArray alloc] init];
|
|
Activity::Source *const activity_source = _machine->activity_source();
|
|
if(activity_source) {
|
|
_activityObserver.machine = self;
|
|
activity_source->set_activity_observer(&_activityObserver);
|
|
}
|
|
|
|
_delegateMachineAccessLock = [[NSLock alloc] init];
|
|
|
|
_speakerDelegate.machine = self;
|
|
_speakerDelegate.machineAccessLock = _delegateMachineAccessLock;
|
|
|
|
_inputEvents = [[NSMutableArray alloc] init];
|
|
|
|
_joystickMachine = _machine->joystick_machine();
|
|
[self updateJoystickTimer];
|
|
_isUpdating.clear();
|
|
}
|
|
return self;
|
|
}
|
|
|
|
- (void)speaker:(Outputs::Speaker::Speaker *)speaker didCompleteSamples:(const int16_t *)samples length:(int)length {
|
|
[self.audioQueue enqueueAudioBuffer:samples numberOfSamples:(unsigned int)length];
|
|
}
|
|
|
|
- (void)speakerDidChangeInputClock:(Outputs::Speaker::Speaker *)speaker {
|
|
[self.delegate machineSpeakerDidChangeInputClock:self];
|
|
}
|
|
|
|
- (void)dealloc {
|
|
[_joystickTimer invalidate];
|
|
|
|
// The two delegate's references to this machine are nilled out here because close_output may result
|
|
// in a data flush, which might cause an audio callback, which could cause the audio queue to decide
|
|
// that it's out of data, resulting in an attempt further to run the machine while it is dealloc'ing.
|
|
//
|
|
// They are nilled inside an explicit lock because that allows the delegates to protect their entire
|
|
// call into the machine, not just the pointer access.
|
|
[_delegateMachineAccessLock lock];
|
|
_speakerDelegate.machine = nil;
|
|
[_delegateMachineAccessLock unlock];
|
|
}
|
|
|
|
- (Outputs::Speaker::Speaker *)speaker {
|
|
const auto audio_producer = _machine->audio_producer();
|
|
if(!audio_producer) {
|
|
return nullptr;
|
|
}
|
|
return audio_producer->get_speaker();
|
|
}
|
|
|
|
- (float)idealSamplingRateFromRange:(NSRange)range {
|
|
@synchronized(self) {
|
|
Outputs::Speaker::Speaker *speaker = [self speaker];
|
|
if(speaker) {
|
|
return speaker->get_ideal_clock_rate_in_range((float)range.location, (float)(range.location + range.length));
|
|
}
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
- (BOOL)isStereo {
|
|
@synchronized(self) {
|
|
Outputs::Speaker::Speaker *speaker = [self speaker];
|
|
if(speaker) {
|
|
return speaker->get_is_stereo();
|
|
}
|
|
return NO;
|
|
}
|
|
}
|
|
|
|
- (void)setAudioSamplingRate:(float)samplingRate bufferSize:(NSUInteger)bufferSize stereo:(BOOL)stereo {
|
|
@synchronized(self) {
|
|
[self setSpeakerDelegate:&_speakerDelegate sampleRate:samplingRate bufferSize:bufferSize stereo:stereo];
|
|
}
|
|
}
|
|
|
|
- (BOOL)setSpeakerDelegate:(Outputs::Speaker::Speaker::Delegate *)delegate sampleRate:(float)sampleRate bufferSize:(NSUInteger)bufferSize stereo:(BOOL)stereo {
|
|
@synchronized(self) {
|
|
Outputs::Speaker::Speaker *speaker = [self speaker];
|
|
if(speaker) {
|
|
speaker->set_output_rate(sampleRate, (int)bufferSize, stereo);
|
|
speaker->set_delegate(delegate);
|
|
return YES;
|
|
}
|
|
return NO;
|
|
}
|
|
}
|
|
|
|
- (void)updateJoystickTimer {
|
|
// Joysticks updates are scheduled for a nominal 200 polls/second, using a plain old NSTimer.
|
|
if(_joystickMachine && _joystickManager) {
|
|
_joystickTimer = [NSTimer scheduledTimerWithTimeInterval:1.0 / 200.0 target:self selector:@selector(updateJoysticks) userInfo:nil repeats:YES];
|
|
} else {
|
|
[_joystickTimer invalidate];
|
|
_joystickTimer = nil;
|
|
}
|
|
}
|
|
|
|
- (void)updateJoysticks {
|
|
[_joystickManager update];
|
|
|
|
// TODO: configurable mapping from physical joypad inputs to machine inputs.
|
|
// Until then, apply a default mapping.
|
|
|
|
@synchronized(self) {
|
|
size_t c = 0;
|
|
auto &machine_joysticks = _joystickMachine->get_joysticks();
|
|
for(CSJoystick *joystick in _joystickManager.joysticks) {
|
|
size_t target = c % machine_joysticks.size();
|
|
++c;
|
|
|
|
// Post the first two analogue axes presented by the controller as horizontal and vertical inputs,
|
|
// unless the user seems to be using a hat.
|
|
// SDL will return a value in the range [-32768, 32767], so map from that to [0, 1.0]
|
|
if(!joystick.hats.count || !joystick.hats[0].direction) {
|
|
if(joystick.axes.count > 0) {
|
|
const float x_axis = joystick.axes[0].position;
|
|
machine_joysticks[target]->set_input(Inputs::Joystick::Input(Inputs::Joystick::Input::Type::Horizontal), x_axis);
|
|
}
|
|
if(joystick.axes.count > 1) {
|
|
const float y_axis = joystick.axes[1].position;
|
|
machine_joysticks[target]->set_input(Inputs::Joystick::Input(Inputs::Joystick::Input::Type::Vertical), y_axis);
|
|
}
|
|
} else {
|
|
// Forward hats as directions; hats always override analogue inputs.
|
|
for(CSJoystickHat *hat in joystick.hats) {
|
|
machine_joysticks[target]->set_input(Inputs::Joystick::Input(Inputs::Joystick::Input::Type::Up), !!(hat.direction & CSJoystickHatDirectionUp));
|
|
machine_joysticks[target]->set_input(Inputs::Joystick::Input(Inputs::Joystick::Input::Type::Down), !!(hat.direction & CSJoystickHatDirectionDown));
|
|
machine_joysticks[target]->set_input(Inputs::Joystick::Input(Inputs::Joystick::Input::Type::Left), !!(hat.direction & CSJoystickHatDirectionLeft));
|
|
machine_joysticks[target]->set_input(Inputs::Joystick::Input(Inputs::Joystick::Input::Type::Right), !!(hat.direction & CSJoystickHatDirectionRight));
|
|
}
|
|
}
|
|
|
|
// Forward all fire buttons, mapping as a function of index.
|
|
if(machine_joysticks[target]->get_number_of_fire_buttons()) {
|
|
std::vector<bool> button_states((size_t)machine_joysticks[target]->get_number_of_fire_buttons());
|
|
for(CSJoystickButton *button in joystick.buttons) {
|
|
if(button.isPressed) button_states[(size_t)(((int)button.index - 1) % machine_joysticks[target]->get_number_of_fire_buttons())] = true;
|
|
}
|
|
for(size_t index = 0; index < button_states.size(); ++index) {
|
|
machine_joysticks[target]->set_input(
|
|
Inputs::Joystick::Input(Inputs::Joystick::Input::Type::Fire, index),
|
|
button_states[index]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
- (void)setView:(CSScanTargetView *)view aspectRatio:(float)aspectRatio {
|
|
_view = view;
|
|
_view.displayLinkDelegate = self;
|
|
_machine->scan_producer()->set_scan_target(_view.scanTarget.scanTarget);
|
|
}
|
|
|
|
- (void)paste:(NSString *)paste {
|
|
auto keyboardMachine = _machine->keyboard_machine();
|
|
if(keyboardMachine)
|
|
keyboardMachine->type_string([paste UTF8String]);
|
|
}
|
|
|
|
- (NSBitmapImageRep *)imageRepresentation {
|
|
return self.view.imageRepresentation;
|
|
}
|
|
|
|
- (void)applyMedia:(const Analyser::Static::Media &)media {
|
|
@synchronized(self) {
|
|
const auto mediaTarget = _machine->media_target();
|
|
if(mediaTarget) mediaTarget->insert_media(media);
|
|
}
|
|
}
|
|
|
|
- (void)setJoystickManager:(CSJoystickManager *)joystickManager {
|
|
_joystickManager = joystickManager;
|
|
if(_joystickMachine) {
|
|
@synchronized(self) {
|
|
auto &machine_joysticks = _joystickMachine->get_joysticks();
|
|
for(const auto &joystick: machine_joysticks) {
|
|
joystick->reset_all_inputs();
|
|
}
|
|
}
|
|
}
|
|
|
|
[self updateJoystickTimer];
|
|
}
|
|
|
|
- (void)setKey:(uint16_t)key characters:(NSString *)characters isPressed:(BOOL)isPressed {
|
|
[self applyInputEvent:^{
|
|
auto keyboard_machine = self->_machine->keyboard_machine();
|
|
if(keyboard_machine && (self.inputMode != CSMachineKeyboardInputModeJoystick || !keyboard_machine->get_keyboard().is_exclusive())) {
|
|
Inputs::Keyboard::Key mapped_key = Inputs::Keyboard::Key::Help; // Make an innocuous default guess.
|
|
#define BIND(source, dest) case source: mapped_key = Inputs::Keyboard::Key::dest; break;
|
|
// Connect the Carbon-era Mac keyboard scancodes to Clock Signal's 'universal' enumeration in order
|
|
// to pass into the platform-neutral realm.
|
|
switch(key) {
|
|
BIND(VK_ANSI_0, k0); BIND(VK_ANSI_1, k1); BIND(VK_ANSI_2, k2); BIND(VK_ANSI_3, k3); BIND(VK_ANSI_4, k4);
|
|
BIND(VK_ANSI_5, k5); BIND(VK_ANSI_6, k6); BIND(VK_ANSI_7, k7); BIND(VK_ANSI_8, k8); BIND(VK_ANSI_9, k9);
|
|
|
|
BIND(VK_ANSI_Q, Q); BIND(VK_ANSI_W, W); BIND(VK_ANSI_E, E); BIND(VK_ANSI_R, R); BIND(VK_ANSI_T, T);
|
|
BIND(VK_ANSI_Y, Y); BIND(VK_ANSI_U, U); BIND(VK_ANSI_I, I); BIND(VK_ANSI_O, O); BIND(VK_ANSI_P, P);
|
|
|
|
BIND(VK_ANSI_A, A); BIND(VK_ANSI_S, S); BIND(VK_ANSI_D, D); BIND(VK_ANSI_F, F); BIND(VK_ANSI_G, G);
|
|
BIND(VK_ANSI_H, H); BIND(VK_ANSI_J, J); BIND(VK_ANSI_K, K); BIND(VK_ANSI_L, L);
|
|
|
|
BIND(VK_ANSI_Z, Z); BIND(VK_ANSI_X, X); BIND(VK_ANSI_C, C); BIND(VK_ANSI_V, V);
|
|
BIND(VK_ANSI_B, B); BIND(VK_ANSI_N, N); BIND(VK_ANSI_M, M);
|
|
|
|
BIND(VK_F1, F1); BIND(VK_F2, F2); BIND(VK_F3, F3); BIND(VK_F4, F4);
|
|
BIND(VK_F5, F5); BIND(VK_F6, F6); BIND(VK_F7, F7); BIND(VK_F8, F8);
|
|
BIND(VK_F9, F9); BIND(VK_F10, F10); BIND(VK_F11, F11); BIND(VK_F12, F12);
|
|
|
|
BIND(VK_ANSI_Keypad0, Keypad0); BIND(VK_ANSI_Keypad1, Keypad1); BIND(VK_ANSI_Keypad2, Keypad2);
|
|
BIND(VK_ANSI_Keypad3, Keypad3); BIND(VK_ANSI_Keypad4, Keypad4); BIND(VK_ANSI_Keypad5, Keypad5);
|
|
BIND(VK_ANSI_Keypad6, Keypad6); BIND(VK_ANSI_Keypad7, Keypad7); BIND(VK_ANSI_Keypad8, Keypad8);
|
|
BIND(VK_ANSI_Keypad9, Keypad9);
|
|
|
|
BIND(VK_ANSI_Equal, Equals); BIND(VK_ANSI_Minus, Hyphen);
|
|
BIND(VK_ANSI_RightBracket, CloseSquareBracket); BIND(VK_ANSI_LeftBracket, OpenSquareBracket);
|
|
BIND(VK_ANSI_Quote, Quote); BIND(VK_ANSI_Grave, BackTick);
|
|
|
|
BIND(VK_ANSI_Semicolon, Semicolon);
|
|
BIND(VK_ANSI_Backslash, Backslash); BIND(VK_ANSI_Slash, ForwardSlash);
|
|
BIND(VK_ANSI_Comma, Comma); BIND(VK_ANSI_Period, FullStop);
|
|
|
|
BIND(VK_ANSI_KeypadDecimal, KeypadDecimalPoint); BIND(VK_ANSI_KeypadEquals, KeypadEquals);
|
|
BIND(VK_ANSI_KeypadMultiply, KeypadAsterisk); BIND(VK_ANSI_KeypadDivide, KeypadSlash);
|
|
BIND(VK_ANSI_KeypadPlus, KeypadPlus); BIND(VK_ANSI_KeypadMinus, KeypadMinus);
|
|
BIND(VK_ANSI_KeypadClear, KeypadDelete); BIND(VK_ANSI_KeypadEnter, KeypadEnter);
|
|
|
|
BIND(VK_Return, Enter); BIND(VK_Tab, Tab);
|
|
BIND(VK_Space, Space); BIND(VK_Delete, Backspace);
|
|
BIND(VK_Control, LeftControl); BIND(VK_Option, LeftOption);
|
|
BIND(VK_Command, LeftMeta); BIND(VK_Shift, LeftShift);
|
|
BIND(VK_RightControl, RightControl); BIND(VK_RightOption, RightOption);
|
|
BIND(VK_Escape, Escape); BIND(VK_CapsLock, CapsLock);
|
|
BIND(VK_Home, Home); BIND(VK_End, End);
|
|
BIND(VK_PageUp, PageUp); BIND(VK_PageDown, PageDown);
|
|
|
|
BIND(VK_RightShift, RightShift);
|
|
BIND(VK_Help, Help);
|
|
BIND(VK_ForwardDelete, Delete);
|
|
|
|
BIND(VK_LeftArrow, Left); BIND(VK_RightArrow, Right);
|
|
BIND(VK_DownArrow, Down); BIND(VK_UpArrow, Up);
|
|
}
|
|
#undef BIND
|
|
|
|
// Pick an ASCII code, if any.
|
|
char pressedKey = '\0';
|
|
if(characters.length) {
|
|
unichar firstCharacter = [characters characterAtIndex:0];
|
|
if(firstCharacter < 128) {
|
|
pressedKey = (char)firstCharacter;
|
|
}
|
|
}
|
|
|
|
@synchronized(self) {
|
|
if(keyboard_machine->apply_key(mapped_key, pressedKey, isPressed, self.inputMode == CSMachineKeyboardInputModeKeyboardLogical)) {
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
auto joystick_machine = self->_machine->joystick_machine();
|
|
if(self.inputMode == CSMachineKeyboardInputModeJoystick && joystick_machine) {
|
|
auto &joysticks = joystick_machine->get_joysticks();
|
|
if(!joysticks.empty()) {
|
|
// Convert to a C++ bool so that the following calls are resolved correctly even if overloaded.
|
|
bool is_pressed = !!isPressed;
|
|
switch(key) {
|
|
case VK_LeftArrow: joysticks[0]->set_input(Inputs::Joystick::Input::Left, is_pressed); break;
|
|
case VK_RightArrow: joysticks[0]->set_input(Inputs::Joystick::Input::Right, is_pressed); break;
|
|
case VK_UpArrow: joysticks[0]->set_input(Inputs::Joystick::Input::Up, is_pressed); break;
|
|
case VK_DownArrow: joysticks[0]->set_input(Inputs::Joystick::Input::Down, is_pressed); break;
|
|
case VK_Space: joysticks[0]->set_input(Inputs::Joystick::Input::Fire, is_pressed); break;
|
|
case VK_ANSI_A: joysticks[0]->set_input(Inputs::Joystick::Input(Inputs::Joystick::Input::Fire, 0), is_pressed); break;
|
|
case VK_ANSI_S: joysticks[0]->set_input(Inputs::Joystick::Input(Inputs::Joystick::Input::Fire, 1), is_pressed); break;
|
|
case VK_ANSI_D: joysticks[0]->set_input(Inputs::Joystick::Input(Inputs::Joystick::Input::Fire, 2), is_pressed); break;
|
|
case VK_ANSI_F: joysticks[0]->set_input(Inputs::Joystick::Input(Inputs::Joystick::Input::Fire, 3), is_pressed); break;
|
|
default:
|
|
if(characters.length) {
|
|
joysticks[0]->set_input(Inputs::Joystick::Input([characters characterAtIndex:0]), is_pressed);
|
|
} else {
|
|
joysticks[0]->set_input(Inputs::Joystick::Input::Fire, is_pressed);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}];
|
|
}
|
|
|
|
- (void)applyInputEvent:(dispatch_block_t)event {
|
|
@synchronized(_inputEvents) {
|
|
[_inputEvents addObject:event];
|
|
}
|
|
}
|
|
|
|
- (void)clearAllKeys {
|
|
const auto keyboard_machine = _machine->keyboard_machine();
|
|
if(keyboard_machine) {
|
|
[self applyInputEvent:^{
|
|
keyboard_machine->get_keyboard().reset_all_keys();
|
|
}];
|
|
}
|
|
|
|
const auto joystick_machine = _machine->joystick_machine();
|
|
if(joystick_machine) {
|
|
[self applyInputEvent:^{
|
|
for(auto &joystick : joystick_machine->get_joysticks()) {
|
|
joystick->reset_all_inputs();
|
|
}
|
|
}];
|
|
}
|
|
|
|
const auto mouse_machine = _machine->mouse_machine();
|
|
if(mouse_machine) {
|
|
[self applyInputEvent:^{
|
|
mouse_machine->get_mouse().reset_all_buttons();
|
|
}];
|
|
}
|
|
}
|
|
|
|
- (void)setMouseButton:(int)button isPressed:(BOOL)isPressed {
|
|
auto mouse_machine = _machine->mouse_machine();
|
|
if(mouse_machine) {
|
|
[self applyInputEvent:^{
|
|
mouse_machine->get_mouse().set_button_pressed(button % mouse_machine->get_mouse().get_number_of_buttons(), isPressed);
|
|
}];
|
|
}
|
|
}
|
|
|
|
- (void)addMouseMotionX:(CGFloat)deltaX y:(CGFloat)deltaY {
|
|
auto mouse_machine = _machine->mouse_machine();
|
|
if(mouse_machine) {
|
|
[self applyInputEvent:^{
|
|
mouse_machine->get_mouse().move(int(deltaX), int(deltaY));
|
|
}];
|
|
}
|
|
}
|
|
|
|
#pragma mark - Options
|
|
|
|
- (void)setUseFastLoadingHack:(BOOL)useFastLoadingHack {
|
|
Configurable::Device *configurable_device = _machine->configurable_device();
|
|
if(!configurable_device) return;
|
|
|
|
@synchronized(self) {
|
|
_useFastLoadingHack = useFastLoadingHack;
|
|
|
|
auto options = configurable_device->get_options();
|
|
Reflection::set(*options, "quickload", useFastLoadingHack ? true : false);
|
|
configurable_device->set_options(options);
|
|
}
|
|
}
|
|
|
|
- (void)setVideoSignal:(CSMachineVideoSignal)videoSignal {
|
|
Configurable::Device *configurable_device = _machine->configurable_device();
|
|
if(!configurable_device) return;
|
|
|
|
@synchronized(self) {
|
|
_videoSignal = videoSignal;
|
|
|
|
Configurable::Display display;
|
|
switch(videoSignal) {
|
|
case CSMachineVideoSignalRGB: display = Configurable::Display::RGB; break;
|
|
case CSMachineVideoSignalSVideo: display = Configurable::Display::SVideo; break;
|
|
case CSMachineVideoSignalComposite: display = Configurable::Display::CompositeColour; break;
|
|
case CSMachineVideoSignalMonochromeComposite: display = Configurable::Display::CompositeMonochrome; break;
|
|
}
|
|
|
|
auto options = configurable_device->get_options();
|
|
Reflection::set(*options, "output", int(display));
|
|
configurable_device->set_options(options);
|
|
}
|
|
}
|
|
|
|
- (BOOL)supportsVideoSignal:(CSMachineVideoSignal)videoSignal {
|
|
Configurable::Device *configurable_device = _machine->configurable_device();
|
|
if(!configurable_device) return NO;
|
|
|
|
// Get the options this machine provides.
|
|
@synchronized(self) {
|
|
auto options = configurable_device->get_options();
|
|
|
|
// Get the standard option for this video signal.
|
|
Configurable::Display option;
|
|
switch(videoSignal) {
|
|
case CSMachineVideoSignalRGB: option = Configurable::Display::RGB; break;
|
|
case CSMachineVideoSignalSVideo: option = Configurable::Display::SVideo; break;
|
|
case CSMachineVideoSignalComposite: option = Configurable::Display::CompositeColour; break;
|
|
case CSMachineVideoSignalMonochromeComposite: option = Configurable::Display::CompositeMonochrome; break;
|
|
}
|
|
|
|
// Map to a string and check against returned options for the 'output' field.
|
|
const auto string_option = Reflection::Enum::to_string<Configurable::Display>(option);
|
|
const auto all_values = options->values_for("output");
|
|
|
|
return std::find(all_values.begin(), all_values.end(), string_option) != all_values.end();
|
|
}
|
|
|
|
return NO;
|
|
}
|
|
|
|
- (void)setUseAutomaticTapeMotorControl:(BOOL)useAutomaticTapeMotorControl {
|
|
Configurable::Device *configurable_device = _machine->configurable_device();
|
|
if(!configurable_device) return;
|
|
|
|
@synchronized(self) {
|
|
_useAutomaticTapeMotorControl = useAutomaticTapeMotorControl;
|
|
|
|
auto options = configurable_device->get_options();
|
|
Reflection::set(*options, "automatic_tape_motor_control", useAutomaticTapeMotorControl ? true : false);
|
|
configurable_device->set_options(options);
|
|
}
|
|
}
|
|
|
|
- (void)setUseQuickBootingHack:(BOOL)useQuickBootingHack {
|
|
Configurable::Device *configurable_device = _machine->configurable_device();
|
|
if(!configurable_device) return;
|
|
|
|
@synchronized(self) {
|
|
_useQuickBootingHack = useQuickBootingHack;
|
|
|
|
auto options = configurable_device->get_options();
|
|
Reflection::set(*options, "quickboot", useQuickBootingHack ? true : false);
|
|
configurable_device->set_options(options);
|
|
}
|
|
}
|
|
|
|
- (NSString *)userDefaultsPrefix {
|
|
// Assumes that the first machine in the targets list is the source of user defaults.
|
|
std::string name = Machine::ShortNameForTargetMachine(_analyser.targets.front()->machine);
|
|
return [[NSString stringWithUTF8String:name.c_str()] lowercaseString];
|
|
}
|
|
|
|
- (BOOL)canInsertMedia {
|
|
return !!_machine->media_target();
|
|
}
|
|
|
|
#pragma mark - Special machines
|
|
|
|
- (CSAtari2600 *)atari2600 {
|
|
return [[CSAtari2600 alloc] initWithAtari2600:_machine->raw_pointer() owner:self];
|
|
}
|
|
|
|
- (CSZX8081 *)zx8081 {
|
|
return [[CSZX8081 alloc] initWithZX8081:_machine->raw_pointer() owner:self];
|
|
}
|
|
|
|
- (CSAppleII *)appleII {
|
|
return [[CSAppleII alloc] initWithAppleII:_machine->raw_pointer() owner:self];
|
|
}
|
|
|
|
#pragma mark - Input device queries
|
|
|
|
- (BOOL)hasJoystick {
|
|
return !!_machine->joystick_machine();
|
|
}
|
|
|
|
- (BOOL)hasMouse {
|
|
return !!_machine->mouse_machine();
|
|
}
|
|
|
|
- (BOOL)hasExclusiveKeyboard {
|
|
return !!_machine->keyboard_machine() && _machine->keyboard_machine()->get_keyboard().is_exclusive();
|
|
}
|
|
|
|
- (BOOL)shouldUsurpCommand {
|
|
if(!_machine->keyboard_machine()) return NO;
|
|
|
|
const auto essential_modifiers = _machine->keyboard_machine()->get_keyboard().get_essential_modifiers();
|
|
return essential_modifiers.find(Inputs::Keyboard::Key::LeftMeta) != essential_modifiers.end() ||
|
|
essential_modifiers.find(Inputs::Keyboard::Key::RightMeta) != essential_modifiers.end();
|
|
}
|
|
|
|
#pragma mark - Volume control
|
|
|
|
- (void)setVolume:(float)volume {
|
|
@synchronized(self) {
|
|
Outputs::Speaker::Speaker *speaker = [self speaker];
|
|
if(speaker) {
|
|
return speaker->set_output_volume(volume);
|
|
}
|
|
}
|
|
}
|
|
|
|
- (BOOL)hasAudioOutput {
|
|
@synchronized(self) {
|
|
Outputs::Speaker::Speaker *speaker = [self speaker];
|
|
return speaker ? YES : NO;
|
|
}
|
|
}
|
|
|
|
#pragma mark - Activity observation
|
|
|
|
- (void)addLED:(NSString *)led {
|
|
[_leds addObject:led];
|
|
}
|
|
|
|
- (NSArray<NSString *> *)leds {
|
|
return _leds;
|
|
}
|
|
|
|
#pragma mark - Timer
|
|
|
|
- (void)scanTargetViewDisplayLinkDidFire:(CSScanTargetView *)view now:(const CVTimeStamp *)now outputTime:(const CVTimeStamp *)outputTime {
|
|
// First order of business: grab a timestamp.
|
|
const auto timeNow = Time::nanos_now();
|
|
|
|
BOOL isSyncLocking;
|
|
@synchronized(self) {
|
|
// Store a means to map from CVTimeStamp.hostTime to Time::Nanos;
|
|
// there is an extremely dodgy assumption here that the former is in ns.
|
|
// If you can find a well-defined way to get the CVTimeStamp.hostTime units,
|
|
// whether at runtime or via preprocessor define, I'd love to know about it.
|
|
if(!_timeDiff) {
|
|
_timeDiff = int64_t(timeNow) - int64_t(now->hostTime);
|
|
}
|
|
|
|
// Store the next end-of-frame time. TODO: and start of next and implied visible duration, if raster racing?
|
|
_syncTime = int64_t(now->hostTime) + _timeDiff;
|
|
|
|
// Set the current refresh period.
|
|
_refreshPeriod = double(now->videoRefreshPeriod) / double(now->videoTimeScale);
|
|
|
|
// Determine where responsibility lies for drawing.
|
|
isSyncLocking = _isSyncLocking;
|
|
}
|
|
|
|
// Draw the current output. (TODO: do this within the timer if either raster racing or, at least, sync matching).
|
|
if(!isSyncLocking) {
|
|
[self.view draw];
|
|
}
|
|
}
|
|
|
|
#define TICKS 1000
|
|
|
|
- (void)start {
|
|
__block auto lastTime = Time::nanos_now();
|
|
|
|
_timer = [[CSHighPrecisionTimer alloc] initWithTask:^{
|
|
// Grab the time now and, therefore, the amount of time since the timer last fired
|
|
// (subject to a cap to avoid potential perpetual regression).
|
|
const auto timeNow = Time::nanos_now();
|
|
lastTime = std::max(timeNow - Time::Nanos(10'000'000'000 / TICKS), lastTime);
|
|
const auto duration = timeNow - lastTime;
|
|
|
|
BOOL splitAndSync = NO;
|
|
@synchronized(self) {
|
|
// Post on input events.
|
|
@synchronized(self->_inputEvents) {
|
|
for(dispatch_block_t action: self->_inputEvents) {
|
|
action();
|
|
}
|
|
[self->_inputEvents removeAllObjects];
|
|
}
|
|
|
|
// If this tick includes vsync then inspect the machine.
|
|
//
|
|
// _syncTime = 0 is used here as a sentinel to mark that a sync time is known;
|
|
// this with the >= test ensures that no syncs are missed even if some sort of
|
|
// performance problem is afoot (e.g. I'm debugging).
|
|
if(self->_syncTime && timeNow >= self->_syncTime) {
|
|
splitAndSync = self->_isSyncLocking = self->_scanSynchroniser.can_synchronise(self->_machine->scan_producer()->get_scan_status(), self->_refreshPeriod);
|
|
|
|
// If the time window is being split, run up to the split, then check out machine speed, possibly
|
|
// adjusting multiplier, then run after the split. Include a sanity check against an out-of-bounds
|
|
// _syncTime; that can happen when debugging (possibly inter alia?).
|
|
if(splitAndSync) {
|
|
if(self->_syncTime >= lastTime) {
|
|
self->_machine->timed_machine()->run_for((double)(self->_syncTime - lastTime) / 1e9);
|
|
self->_machine->timed_machine()->set_speed_multiplier(
|
|
self->_scanSynchroniser.next_speed_multiplier(self->_machine->scan_producer()->get_scan_status())
|
|
);
|
|
self->_machine->timed_machine()->run_for((double)(timeNow - self->_syncTime) / 1e9);
|
|
} else {
|
|
self->_machine->timed_machine()->run_for((double)(timeNow - lastTime) / 1e9);
|
|
}
|
|
}
|
|
|
|
self->_syncTime = 0;
|
|
}
|
|
|
|
// If the time window is being split, run up to the split, then check out machine speed, possibly
|
|
// adjusting multiplier, then run after the split.
|
|
if(!splitAndSync) {
|
|
self->_machine->timed_machine()->run_for((double)duration / 1e9);
|
|
}
|
|
}
|
|
|
|
// If this was not a split-and-sync then dispatch the update request asynchronously, unless
|
|
// there is an earlier one not yet finished, in which case don't worry about it for now.
|
|
//
|
|
// If it was a split-and-sync then spin until it is safe to dispatch, and dispatch with
|
|
// a concluding draw. Implicit assumption here: whatever is left to be done in the final window
|
|
// can be done within the retrace period.
|
|
auto wasUpdating = self->_isUpdating.test_and_set();
|
|
if(wasUpdating && splitAndSync) {
|
|
while(self->_isUpdating.test_and_set());
|
|
wasUpdating = false;
|
|
}
|
|
if(!wasUpdating) {
|
|
dispatch_async(dispatch_get_global_queue(QOS_CLASS_USER_INTERACTIVE, 0), ^{
|
|
[self.view updateBacking];
|
|
if(splitAndSync) {
|
|
[self.view draw];
|
|
}
|
|
self->_isUpdating.clear();
|
|
});
|
|
}
|
|
|
|
lastTime = timeNow;
|
|
} interval:uint64_t(1000000000) / uint64_t(TICKS)];
|
|
}
|
|
|
|
#undef TICKS
|
|
|
|
- (void)stop {
|
|
[_timer invalidate];
|
|
_timer = nil;
|
|
}
|
|
|
|
+ (BOOL)attemptInstallROM:(NSURL *)url {
|
|
return CSInstallROM(url);
|
|
}
|
|
|
|
@end
|