1
0
mirror of https://github.com/TomHarte/CLK.git synced 2024-11-28 21:49:27 +00:00
CLK/Components/I2C/I2C.cpp
2024-03-26 21:52:29 -04:00

227 lines
5.3 KiB
C++

//
// I2C.cpp
// Clock Signal
//
// Created by Thomas Harte on 16/03/2024.
// Copyright © 2024 Thomas Harte. All rights reserved.
//
#include "I2C.hpp"
#include "../../Outputs/Log.hpp"
using namespace I2C;
namespace {
Log::Logger<Log::Source::I2C> logger;
}
void Bus::set_data(bool pulled) {
set_clock_data(clock_, pulled);
}
bool Bus::data() {
bool result = data_;
if(peripheral_bits_) {
result |= !(peripheral_response_ & 0x80);
}
return result;
}
void Bus::set_clock(bool pulled) {
set_clock_data(pulled, data_);
}
bool Bus::clock() {
return clock_;
}
void Bus::set_clock_data(bool clock_pulled, bool data_pulled) {
// Proceed only if changes are evidenced.
if(clock_pulled == clock_ && data_pulled == data_) {
return;
}
const bool prior_clock = clock_;
const bool prior_data = data_;
clock_ = clock_pulled;
data_ = data_pulled;
// If currently serialising from a peripheral then shift onwards on
// every clock trailing edge.
if(peripheral_bits_) {
// Trailing edge of clock => bit has been consumed.
if(!prior_clock && clock_) {
logger.info().append("<< %d", (peripheral_response_ >> 7) & 1);
--peripheral_bits_;
peripheral_response_ <<= 1;
if(!peripheral_bits_) {
signal(Event::FinishedOutput);
}
}
return;
}
// Not currently serialising implies listening.
if(!clock_ && prior_data != data_) {
// A data transition outside of a clock cycle implies a start or stop.
in_bit_ = false;
if(data_) {
logger.info().append("S");
signal(Event::Start);
} else {
logger.info().append("W");
signal(Event::Stop);
}
} else if(clock_ != prior_clock) {
// Bits: wait until the falling edge of the cycle.
if(!clock_) {
// Rising edge: clock period begins.
in_bit_ = true;
} else if(in_bit_) {
// Falling edge: clock period ends (assuming it began; otherwise this is a preparatory
// clock transition only, immediately after a start bit).
in_bit_ = false;
if(data_) {
logger.info().append("0");
signal(Event::Zero);
} else {
logger.info().append("1");
signal(Event::One);
}
}
}
}
void Bus::signal(Event event) {
const auto capture_bit = [&]() {
input_ = uint16_t((input_ << 1) | (event == Event::Zero ? 0 : 1));
++input_count_;
};
const auto acknowledge = [&]() {
// Post an acknowledgement bit.
peripheral_response_ = 0;
peripheral_bits_ = 1;
};
const auto set_state = [&](State state) {
state_ = state;
input_count_ = 0;
input_ = 0;
};
const auto enqueue = [&](std::optional<uint8_t> next) {
if(next) {
peripheral_response_ = static_cast<uint16_t>(*next);
peripheral_bits_ = 8;
set_state(State::AwaitingByteAcknowledge);
} else {
set_state(State::AwaitingAddress);
}
};
const auto stop = [&]() {
set_state(State::AwaitingAddress);
active_peripheral_ = nullptr;
};
// Allow start and stop conditions at any time.
if(event == Event::Start) {
set_state(State::CollectingAddress);
active_peripheral_ = nullptr;
return;
}
if(event == Event::Stop) {
if(active_peripheral_) {
active_peripheral_->stop();
}
stop();
return;
}
switch(state_) {
// While waiting for an address, don't respond to anything other than a
// start bit, which is actually dealt with above.
case State::AwaitingAddress: break;
// To collect an address: shift in eight bits, and if there's a device
// at that address then acknowledge the address and segue into a read
// or write loop.
case State::CollectingAddress:
capture_bit();
if(input_count_ == 8) {
auto pair = peripherals_.find(uint8_t(input_) & 0xfe);
if(pair != peripherals_.end()) {
active_peripheral_ = pair->second;
active_peripheral_->start(input_ & 1);
if(input_&1) {
acknowledge();
set_state(State::CompletingReadAcknowledge);
} else {
acknowledge();
set_state(State::ReceivingByte);
}
} else {
state_ = State::AwaitingAddress;
}
}
break;
// Receiving byte: wait until a scheduled acknowledgment has
// happened, then collect eight bits, then see whether the
// active peripheral will accept them. If so, acknowledge and repeat.
// Otherwise fall silent.
case State::ReceivingByte:
if(event == Event::FinishedOutput) {
return;
}
capture_bit();
if(input_count_ == 8) {
if(active_peripheral_->write(static_cast<uint8_t>(input_))) {
acknowledge();
set_state(State::ReceivingByte);
} else {
stop();
}
}
break;
// The initial state immediately after a peripheral has been started
// in read mode and the address-select acknowledgement is still
// being serialised.
//
// Once that is completed, enqueues the first byte from the peripheral.
case State::CompletingReadAcknowledge:
if(event != Event::FinishedOutput) {
break;
}
enqueue(active_peripheral_->read());
break;
// Repeating state during reading; waits until the previous byte has
// been fully serialised, and if the host acknowledged it then posts
// the next. If the host didn't acknowledge, stops the connection.
case State::AwaitingByteAcknowledge:
if(event == Event::FinishedOutput) {
break;
}
if(event != Event::Zero) {
stop();
break;
}
// Add a new byte if there is one.
enqueue(active_peripheral_->read());
break;
}
}
void Bus::add_peripheral(Peripheral *peripheral, int address) {
peripherals_[address] = peripheral;
}