1
0
mirror of https://github.com/TomHarte/CLK.git synced 2024-12-27 01:31:42 +00:00
CLK/Components/8272/i8272.cpp

480 lines
16 KiB
C++

//
// i8272.cpp
// Clock Signal
//
// Created by Thomas Harte on 05/08/2017.
// Copyright © 2017 Thomas Harte. All rights reserved.
//
#include "i8272.hpp"
#include <cstdio>
using namespace Intel;
namespace {
const uint8_t StatusRequest = 0x80; // Set: ready to send or receive from processor.
const uint8_t StatusDirection = 0x40; // Set: data is expected to be taken from the 8272 by the processor.
const uint8_t StatusNonDMAExecuting = 0x20; // Set: the execution phase of a data transfer command is ongoing and DMA mode is disabled.
const uint8_t StatusBusy = 0x10; // Set: the FDC is busy.
//const uint8_t StatusD3B = 0x08; // Set: drive 3 is seeking.
//const uint8_t StatusD2B = 0x04; // Set: drive 2 is seeking.
//const uint8_t StatusD1B = 0x02; // Set: drive 1 is seeking.
//const uint8_t StatusD0B = 0x01; // Set: drive 0 is seeking.
}
i8272::i8272(Cycles clock_rate, int clock_rate_multiplier, int revolutions_per_minute) :
Storage::Disk::MFMController(clock_rate, clock_rate_multiplier, revolutions_per_minute),
main_status_(0),
interesting_event_mask_((int)Event8272::CommandByte),
resume_point_(0),
delay_time_(0),
status_{0, 0, 0} {
posit_event((int)Event8272::CommandByte);
}
void i8272::run_for(Cycles cycles) {
Storage::Disk::MFMController::run_for(cycles);
// check for an expired timer
if(delay_time_ > 0) {
if(cycles.as_int() >= delay_time_) {
delay_time_ = 0;
posit_event((int)Event8272::Timer);
} else {
delay_time_ -= cycles.as_int();
}
}
// update seek status of any drives presently seeking
if(main_status_ & 0xf) {
for(int c = 0; c < 4; c++) {
if(drives_[c].phase == Drive::Seeking) {
drives_[c].step_rate_counter += cycles.as_int();
int steps = drives_[c].step_rate_counter / (8000 * step_rate_time_);
drives_[c].step_rate_counter %= (8000 * step_rate_time_);
while(steps--) {
// Perform a step.
int direction = (drives_[c].target_head_position < drives_[c].head_position) ? -1 : 1;
drives_[c].drive->step(direction);
drives_[c].head_position += direction;
// Check for completion.
if(seek_is_satisfied(c)) {
drives_[c].phase = Drive::CompletedSeeking;
if(drives_[c].target_head_position == -1) drives_[c].head_position = 0;
break;
}
}
}
}
}
}
void i8272::set_register(int address, uint8_t value) {
// don't consider attempted sets to the status register
if(!address) return;
// if not ready for commands, do nothing
if(!(main_status_ & StatusRequest)) return;
// accumulate latest byte in the command byte sequence
command_.push_back(value);
posit_event((int)Event8272::CommandByte);
}
uint8_t i8272::get_register(int address) {
if(address) {
// printf("8272 get data\n");
if(result_stack_.empty()) return 0xff;
uint8_t result = result_stack_.back();
result_stack_.pop_back();
if(result_stack_.empty()) posit_event((int)Event8272::ResultEmpty);
return result;
} else {
// printf("Main status: %02x\n", main_status_);
return main_status_;
}
}
void i8272::set_disk(std::shared_ptr<Storage::Disk::Disk> disk, int drive) {
if(drive < 4 && drive >= 0) {
drives_[drive].drive->set_disk(disk);
}
}
#define BEGIN_SECTION() switch(resume_point_) { default:
#define END_SECTION() }
#define WAIT_FOR_EVENT(mask) resume_point_ = __LINE__; interesting_event_mask_ = (int)mask; return; case __LINE__:
#define PASTE(x, y) x##y
#define CONCAT(x, y) PASTE(x, y)
#define FIND_HEADER() \
CONCAT(find_header, __LINE__): WAIT_FOR_EVENT((int)Event::Token | (int)Event::IndexHole); \
if(event_type == (int)Event::IndexHole) index_hole_limit_--; \
else if(get_latest_token().type == Token::ID) goto CONCAT(header_found, __LINE__); \
\
if(index_hole_limit_) goto CONCAT(find_header, __LINE__); \
CONCAT(header_found, __LINE__): 0;\
#define FIND_DATA() \
CONCAT(find_data, __LINE__): WAIT_FOR_EVENT((int)Event::Token | (int)Event::IndexHole); \
if(event_type == (int)Event::Token && get_latest_token().type != Token::Data) goto CONCAT(find_data, __LINE__);
#define READ_HEADER() \
distance_into_section_ = 0; \
set_data_mode(Reading); \
CONCAT(read_header, __LINE__): WAIT_FOR_EVENT(Event::Token); \
header_[distance_into_section_] = get_latest_token().byte_value; \
distance_into_section_++; \
if(distance_into_section_ < 6) goto CONCAT(read_header, __LINE__); \
set_data_mode(Scanning);
#define SET_DRIVE_HEAD_MFM() \
if(!dma_mode_) main_status_ |= StatusNonDMAExecuting; \
set_drive(drives_[command_[1]&3].drive); \
set_is_double_density(command_[0] & 0x40); \
invalidate_track();
void i8272::posit_event(int event_type) {
if(!(interesting_event_mask_ & event_type)) return;
interesting_event_mask_ &= ~event_type;
BEGIN_SECTION();
// Resets busy and non-DMA execution, clears the command buffer, sets the data mode to scanning and flows
// into wait_for_complete_command_sequence.
wait_for_command:
set_data_mode(Storage::Disk::MFMController::DataMode::Scanning);
main_status_ &= ~(StatusBusy | StatusNonDMAExecuting);
command_.clear();
// Sets the data request bit, and waits for a byte. Then sets the busy bit. Continues accepting bytes
// until it has a quantity that make up an entire command, then resets the data request bit and
// branches to that command.
wait_for_complete_command_sequence:
main_status_ |= StatusRequest;
WAIT_FOR_EVENT(Event8272::CommandByte)
main_status_ |= StatusBusy;
switch(command_[0] & 0x1f) {
case 0x06: // read data
if(command_.size() < 9) goto wait_for_complete_command_sequence;
main_status_ &= ~StatusRequest;
goto read_data;
case 0x0b: // read deleted data
if(command_.size() < 9) goto wait_for_complete_command_sequence;
main_status_ &= ~StatusRequest;
goto read_deleted_data;
case 0x05: // write data
if(command_.size() < 9) goto wait_for_complete_command_sequence;
main_status_ &= ~StatusRequest;
goto write_data;
case 0x09: // write deleted data
if(command_.size() < 9) goto wait_for_complete_command_sequence;
main_status_ &= ~StatusRequest;
goto write_deleted_data;
case 0x02: // read track
if(command_.size() < 9) goto wait_for_complete_command_sequence;
main_status_ &= ~StatusRequest;
goto read_track;
case 0x0a: // read ID
if(command_.size() < 2) goto wait_for_complete_command_sequence;
main_status_ &= ~StatusRequest;
goto read_id;
case 0x0d: // format track
if(command_.size() < 6) goto wait_for_complete_command_sequence;
main_status_ &= ~StatusRequest;
goto format_track;
case 0x11: // scan low
if(command_.size() < 9) goto wait_for_complete_command_sequence;
main_status_ &= ~StatusRequest;
goto scan_low;
case 0x19: // scan low or equal
if(command_.size() < 9) goto wait_for_complete_command_sequence;
main_status_ &= ~StatusRequest;
goto scan_low_or_equal;
case 0x1d: // scan high or equal
if(command_.size() < 9) goto wait_for_complete_command_sequence;
main_status_ &= ~StatusRequest;
goto scan_high_or_equal;
case 0x07: // recalibrate
if(command_.size() < 2) goto wait_for_complete_command_sequence;
main_status_ &= ~StatusRequest;
goto recalibrate;
case 0x08: // sense interrupt status
main_status_ &= ~StatusRequest;
goto sense_interrupt_status;
case 0x03: // specify
if(command_.size() < 3) goto wait_for_complete_command_sequence;
main_status_ &= ~StatusRequest;
goto specify;
case 0x04: // sense drive status
if(command_.size() < 2) goto wait_for_complete_command_sequence;
main_status_ &= ~StatusRequest;
goto sense_drive_status;
case 0x0f: // seek
if(command_.size() < 3) goto wait_for_complete_command_sequence;
main_status_ &= ~StatusRequest;
goto seek;
default: // invalid
main_status_ &= ~StatusRequest;
goto invalid;
}
// Performs the read data command.
read_data:
printf("Read data, sector %02x %02x %02x %02x\n", command_[2], command_[3], command_[4], command_[5]);
// Establishes the drive and head being addressed, and whether in double density mode; populates the internal
// cylinder, head, sector and size registers from the command stream.
SET_DRIVE_HEAD_MFM();
cylinder_ = command_[2];
head_ = command_[3];
sector_ = command_[4];
size_ = command_[5];
read_next_data:
// Sets a maximum index hole limit of 2 then performs a find header/read header loop, continuing either until
// the index hole limit is breached or a sector is found with a cylinder, head, sector and size equal to the
// values in the internal registers.
index_hole_limit_ = 2;
find_next_sector:
FIND_HEADER();
if(!index_hole_limit_) goto read_data_not_found;
READ_HEADER();
if(header_[0] != cylinder_ || header_[1] != head_ || header_[2] != sector_ || header_[3] != size_) goto find_next_sector;
// Finds the next data block and sets data mode to reading.
FIND_DATA();
distance_into_section_ = 0;
set_data_mode(Reading);
// Waits for the next token, then supplies it to the CPU by: (i) setting data request and direction; and (ii) resetting
// data request once the byte has been taken. Continues until all bytes have been read.
//
// TODO: signal if the CPU is too slow and missed a byte; at the minute it'll just silently miss. Also allow for other
// ways that sector size might have been specified.
get_byte:
WAIT_FOR_EVENT(Event::Token);
result_stack_.push_back(get_latest_token().byte_value);
distance_into_section_++;
main_status_ |= StatusRequest | StatusDirection;
WAIT_FOR_EVENT(Event8272::ResultEmpty);
main_status_ &= ~StatusRequest;
if(distance_into_section_ < (128 << size_)) goto get_byte;
// read CRC, without transferring it
WAIT_FOR_EVENT(Event::Token);
WAIT_FOR_EVENT(Event::Token);
// check whether that's it
if(sector_ != command_[6]) {
sector_++;
goto read_next_data;
}
// For a final result phase, post the standard ST0, ST1, ST2, C, H, R, N
goto post_st012chrn;
// Execution reaches here if two index holes were discovered before a matching sector — i.e. the data wasn't found.
// In that case set appropriate error flags and post the results.
read_data_not_found:
printf("Not found\n");
status_[1] |= 0x4;
status_[0] = 0x40; // (status_[0] & ~0xc0) |
goto post_st012chrn;
read_deleted_data:
printf("Read deleted data unimplemented!!\n");
goto wait_for_command;
write_data:
printf("Write data unimplemented!!\n");
goto wait_for_command;
write_deleted_data:
printf("Write deleted data unimplemented!!\n");
goto wait_for_command;
read_track:
printf("Read track unimplemented!!\n");
goto wait_for_command;
// Performs the read ID command.
read_id:
// Establishes the drive and head being addressed, and whether in double density mode.
printf("Read ID\n");
SET_DRIVE_HEAD_MFM();
// Sets a maximum index hole limit of 2 then waits either until it finds a header mark or sees too many index holes.
// If a header mark is found, reads in the following bytes that produce a header. Otherwise branches to data not found.
index_hole_limit_ = 2;
read_id_find_next_sector:
FIND_HEADER();
if(!index_hole_limit_) goto read_data_not_found;
READ_HEADER();
// Sets internal registers from the discovered header and posts the standard ST0, ST1, ST2, C, H, R, N.
cylinder_ = header_[0];
head_ = header_[1];
sector_ = header_[2];
size_ = header_[3];
goto post_st012chrn;
format_track:
printf("Fromat track unimplemented!!\n");
goto wait_for_command;
scan_low:
printf("Scan low unimplemented!!\n");
goto wait_for_command;
scan_low_or_equal:
printf("Scan low or equal unimplemented!!\n");
goto wait_for_command;
scan_high_or_equal:
printf("Scan high or equal unimplemented!!\n");
goto wait_for_command;
// Performs both recalibrate and seek commands. These commands occur asynchronously, so the actual work
// occurs in ::run_for; this merely establishes that seeking should be ongoing.
recalibrate:
seek:
printf((command_.size() > 2) ? "Seek\n" : "Recalibrate\n");
// Declines to act if a seek is already ongoing; otherwise resets all status registers, sets the drive
// into seeking mode, sets the drive's main status seeking bit, and sets the target head position: for
// a recalibrate the target is -1 and ::run_for knows that -1 means the terminal condition is the drive
// returning that its at track zero, and that it should reset the drive's current position once reached.
if(drives_[command_[1]&3].phase != Drive::Seeking) {
status_[0] = status_[1] = status_[2] = 0;
int drive = command_[1]&3;
drives_[drive].phase = Drive::Seeking;
drives_[drive].steps_taken = 0;
drives_[drive].target_head_position = (command_.size() > 2) ? command_[2] : -1;
drives_[drive].step_rate_counter = 0;
// Check whether any steps are even needed.
if(seek_is_satisfied(drive)) {
drives_[drive].phase = Drive::CompletedSeeking;
} else {
main_status_ |= 1 << (command_[1]&3);
}
}
goto wait_for_command;
// Performs sense interrupt status.
sense_interrupt_status:
printf("Sense interrupt status\n");
{
// Find the first drive that is in the CompletedSeeking state.
int found_drive = -1;
for(int c = 0; c < 4; c++) {
if(drives_[c].phase == Drive::CompletedSeeking) {
found_drive = c;
break;
}
}
// If a drive was found, return its results. Otherwise return a single 0x80.
if(found_drive != -1) {
drives_[found_drive].phase = Drive::NotSeeking;
status_[0] = (uint8_t)found_drive | 0x20;
main_status_ &= ~(1 << found_drive);
result_stack_.push_back(drives_[found_drive].head_position);
result_stack_.push_back(status_[0]);
} else {
result_stack_.push_back(0x80);
}
}
goto post_result;
// Performs specify.
specify:
// Just store the values, and terminate the command.
step_rate_time_ = command_[1] &0xf0; // i.e. 16 to 240m
head_unload_time_ = command_[1] & 0x0f; // i.e. 1 to 16ms
head_load_time_ = command_[2] & ~1; // i.e. 2 to 254 ms in increments of 2ms
dma_mode_ = !(command_[2] & 1);
goto wait_for_command;
sense_drive_status:
{
int drive = command_[1] & 3;
result_stack_.push_back(
(command_[1] & 7) | // drive and head number
0x08 | // single sided
(drives_[drive].drive->get_is_track_zero() ? 0x10 : 0x00) |
(drives_[drive].drive->has_disk() ? 0x20 : 0x00) | // ready, approximately (TODO)
0x40 // write protected
);
}
goto post_result;
// Performs any invalid command.
invalid:
// A no-op, but posts ST0.
result_stack_.push_back(status_[0]);
goto post_result;
// Posts ST0, ST1, ST2, C, H, R and N as a result phase.
post_st012chrn:
result_stack_.push_back(size_);
result_stack_.push_back(sector_);
result_stack_.push_back(head_);
result_stack_.push_back(cylinder_);
result_stack_.push_back(status_[2]);
result_stack_.push_back(status_[1]);
result_stack_.push_back(status_[0]);
goto post_result;
// Posts whatever is in result_stack_ as a result phase. Be aware that it is a stack — the
// last thing in it will be returned first.
post_result:
// Set ready to send data to the processor, no longer in non-DMA execution phase.
main_status_ |= StatusRequest | StatusDirection;
main_status_ &= ~StatusNonDMAExecuting;
// The actual stuff of unwinding result_stack_ is handled by ::get_register; wait
// until the processor has read all result bytes.
WAIT_FOR_EVENT(Event8272::ResultEmpty);
// Reset data direction and end the command.
main_status_ &= ~StatusDirection;
goto wait_for_command;
END_SECTION()
}
bool i8272::seek_is_satisfied(int drive) {
return (drives_[drive].target_head_position == drives_[drive].head_position) ||
(drives_[drive].target_head_position == -1 && drives_[drive].drive->get_is_track_zero());
}