1
0
mirror of https://github.com/TomHarte/CLK.git synced 2024-11-30 04:50:08 +00:00
CLK/Machines/Apple/AppleIIgs/Sound.cpp
2020-11-26 19:56:42 -05:00

376 lines
12 KiB
C++

//
// Sound.cpp
// Clock Signal
//
// Created by Thomas Harte on 04/11/2020.
// Copyright © 2020 Thomas Harte. All rights reserved.
//
#include "Sound.hpp"
#include <cassert>
#include <cstdio>
#include <numeric>
// TODO: is it safe not to check for back-pressure in pending_stores_?
using namespace Apple::IIgs::Sound;
GLU::GLU(Concurrency::DeferringAsyncTaskQueue &audio_queue) : audio_queue_(audio_queue) {
// Reset all pending stores.
MemoryWrite disabled_write;
disabled_write.enabled = false;
for(int c = 0; c < StoreBufferSize; c++) {
pending_stores_[c].store(disabled_write);
}
}
void GLU::set_data(uint8_t data) {
if(local_.control & 0x40) {
// RAM access.
local_.ram_[address_] = data;
MemoryWrite write;
write.enabled = true;
write.address = address_;
write.value = data;
write.time = pending_store_write_time_;
pending_stores_[pending_store_write_].store(write, std::memory_order::memory_order_release);
pending_store_write_ = (pending_store_write_ + 1) % (StoreBufferSize - 1);
} else {
// Register access.
const auto address = address_; // To make sure I don't inadvertently 'capture' address_.
local_.set_register(address, data);
audio_queue_.defer([this, address, data] () {
remote_.set_register(address, data);
});
}
if(local_.control & 0x20) {
++address_;
}
}
void GLU::EnsoniqState::set_register(uint16_t address, uint8_t value) {
switch(address & 0xe0) {
case 0x00:
oscillators[address & 0x1f].velocity = uint16_t((oscillators[address & 0x1f].velocity & 0xff00) | (value << 0));
break;
case 0x20:
oscillators[address & 0x1f].velocity = uint16_t((oscillators[address & 0x1f].velocity & 0x00ff) | (value << 8));
break;
case 0x40:
oscillators[address & 0x1f].volume = value;
break;
case 0x60:
/* Does setting the last sample make any sense? */
break;
case 0x80:
oscillators[address & 0x1f].address = value;
break;
case 0xa0: {
oscillators[address & 0x1f].control = value;
// Halt + M0 => reset position.
if((oscillators[address & 0x1f].control & 0x3) == 3) {
oscillators[address & 0x1f].control |= 1;
}
} break;
case 0xc0:
oscillators[address & 0x1f].table_size = value;
// The most-significant bit that should be used is 16 + (value & 7).
oscillators[address & 0x1f].overflow_mask = ~(0xffffff >> (7 - (value & 7)));
break;
default:
switch(address & 0xff) {
case 0xe0:
/* Does setting the interrupt register really make any sense? */
break;
case 0xe1:
oscillator_count = 1 + ((value >> 1) & 31);
break;
case 0xe2:
/* Writing to the analogue to digital input definitely makes no sense. */
break;
}
break;
}
}
uint8_t GLU::get_data() {
const auto address = address_;
if(local_.control & 0x20) {
++address_;
}
switch(address & 0xe0) {
case 0x00: return local_.oscillators[address & 0x1f].velocity & 0xff;
case 0x20: return local_.oscillators[address & 0x1f].velocity >> 8;;
case 0x40: return local_.oscillators[address & 0x1f].volume;
case 0x60: return local_.oscillators[address & 0x1f].sample(local_.ram_); // i.e. look up what the sample was on demand.
case 0x80: return local_.oscillators[address & 0x1f].address;
case 0xa0: return local_.oscillators[address & 0x1f].control;
case 0xc0: return local_.oscillators[address & 0x1f].table_size;
default:
switch(address & 0xff) {
case 0xe0: {
// Find the first enabled oscillator that is signalling an interrupt and has interrupts enabled.
for(int c = 0; c < local_.oscillator_count; c++) {
if(local_.oscillators[c].interrupt_request && (local_.oscillators[c].control & 0x08)) {
local_.oscillators[c].interrupt_request = false;
return uint8_t(0x41 | (c << 1));
}
}
// No interrupt found.
return 0xc1;
} break;
case 0xe1: return uint8_t((local_.oscillator_count - 1) << 1); // TODO: should other bits be 0 or 1?
case 0xe2: return 128; // Input audio. Unimplemented!
}
break;
}
return 0;
}
bool GLU::get_interrupt_line() {
// Return @c true if any oscillator currently has its interrupt request
// set, and has interrupts enabled.
for(int c = 0; c < local_.oscillator_count; c++) {
if(local_.oscillators[c].interrupt_request && (local_.oscillators[c].control & 0x08)) {
return true;
}
}
return false;
}
// MARK: - Time entry points.
void GLU::run_for(Cycles cycles) {
// Update local state, without generating audio.
skip_audio(local_, cycles.as<size_t>());
// Update the timestamp for memory writes;
pending_store_write_time_ += cycles.as<uint32_t>();
}
void GLU::get_samples(std::size_t number_of_samples, std::int16_t *target) {
// Update remote state, generating audio.
generate_audio(number_of_samples, target);
}
void GLU::skip_samples(const std::size_t number_of_samples) {
// Update remote state, without generating audio.
skip_audio(remote_, number_of_samples);
// Apply any pending stores.
std::atomic_thread_fence(std::memory_order::memory_order_acquire);
const uint32_t final_time = pending_store_read_time_ + uint32_t(number_of_samples);
while(true) {
auto next_store = pending_stores_[pending_store_read_].load(std::memory_order::memory_order_acquire);
if(!next_store.enabled) break;
if(next_store.time >= final_time) break;
remote_.ram_[next_store.address] = next_store.value;
next_store.enabled = false;
pending_stores_[pending_store_read_].store(next_store, std::memory_order::memory_order_relaxed);
pending_store_read_ = (pending_store_read_ + 1) & (StoreBufferSize - 1);
}
}
void GLU::set_sample_volume_range(std::int16_t range) {
output_range_ = range;
}
// MARK: - Interface boilerplate.
void GLU::set_control(uint8_t control) {
local_.control = control;
audio_queue_.defer([this, control] () {
remote_.control = control;
});
}
uint8_t GLU::get_control() {
return local_.control;
}
void GLU::set_address_low(uint8_t low) {
address_ = uint16_t((address_ & 0xff00) | low);
}
uint8_t GLU::get_address_low() {
return address_ & 0xff;
}
void GLU::set_address_high(uint8_t high) {
address_ = uint16_t((high << 8) | (address_ & 0x00ff));
}
uint8_t GLU::get_address_high() {
return address_ >> 8;
}
// MARK: - Update logic.
Cycles GLU::get_next_sequence_point() const {
uint32_t result = std::numeric_limits<decltype(result)>::max();
for(int c = 0; c < local_.oscillator_count; c++) {
// Don't do anything for halted oscillators, or for oscillators that can't hit stops.
if((local_.oscillators[c].control&3) != 2) {
continue;
}
// Determine how many cycles until a stop is hit and update the pending result
// if this is the new soonest-to-expire oscillator.
const auto first_overflow_value = (local_.oscillators[c].overflow_mask - 1) << 1;
const auto time_until_stop = (first_overflow_value - local_.oscillators[c].position + local_.oscillators[c].velocity - 1) / local_.oscillators[c].velocity;
result = std::min(result, time_until_stop);
}
return Cycles(result);
}
void GLU::skip_audio(EnsoniqState &state, size_t number_of_samples) {
// Just advance all oscillator pointers and check for interrupts.
// If a read occurs to the current-output level, generate it then.
for(int c = 0; c < state.oscillator_count; c++) {
// Don't do anything for halted oscillators.
if(state.oscillators[c].control&1) continue;
// Update phase.
state.oscillators[c].position += state.oscillators[c].velocity * number_of_samples;
// Check for stops, and any interrupts that therefore flow.
if((state.oscillators[c].control & 2) && (state.oscillators[c].position & state.oscillators[c].overflow_mask)) {
// Apply halt, set interrupt request flag.
state.oscillators[c].position = 0;
state.oscillators[c].control |= 1;
state.oscillators[c].interrupt_request = true;
}
}
}
void GLU::generate_audio(size_t number_of_samples, std::int16_t *target) {
auto next_store = pending_stores_[pending_store_read_].load(std::memory_order::memory_order_acquire);
uint8_t next_amplitude = 255;
for(size_t sample = 0; sample < number_of_samples; sample++) {
// TODO: there's a bit of a hack here where it is assumed that the input clock has been
// divided in advance. Real hardware divides by 8, I think?
// Seed output as 0.
int output = 0;
// Apply phase updates to all enabled oscillators.
for(int c = 0; c < remote_.oscillator_count; c++) {
// Don't do anything for halted oscillators.
if(remote_.oscillators[c].control&1) continue;
remote_.oscillators[c].position += remote_.oscillators[c].velocity;
// Test for a new halting event.
switch(remote_.oscillators[c].control & 6) {
case 0: // Free-run mode; don't truncate the position at all, in case the
// accumulator bits in use changes.
output += remote_.oscillators[c].output(remote_.ram_);
break;
case 2: // One-shot mode; check for end of run. Otherwise update sample.
if(remote_.oscillators[c].position & remote_.oscillators[c].overflow_mask) {
remote_.oscillators[c].position = 0;
remote_.oscillators[c].control |= 1;
}
break;
case 4: // Sync/AM mode.
if(c&1) {
// Oscillator is odd-numbered; it will amplitude-modulate the next voice.
next_amplitude = remote_.oscillators[c].sample(remote_.ram_);
continue;
} else {
// Oscillator is even-numbered; it will 'sync' to the even voice, i.e. any
// time it wraps around, it will reset the next oscillator.
if(remote_.oscillators[c].position & remote_.oscillators[c].overflow_mask) {
remote_.oscillators[c].position &= remote_.oscillators[c].overflow_mask;
remote_.oscillators[c+1].position = 0;
}
}
break;
case 6: // Swap mode; possibly trigger partner, and update sample.
// Per tech note #11: "Whenever a swap occurs from a higher-numbered
// oscillator to a lower-numbered one, the output signal from the corresponding
// generator temporarily falls to the zero-crossing level (silence)"
if(remote_.oscillators[c].position & remote_.oscillators[c].overflow_mask) {
remote_.oscillators[c].control |= 1;
remote_.oscillators[c].position = 0;
remote_.oscillators[c^1].control &= ~1;
}
break;
}
// Don't add output for newly-halted oscillators.
if(remote_.oscillators[c].control&1) continue;
// Append new output.
output += (remote_.oscillators[c].output(remote_.ram_) * next_amplitude) / 255;
next_amplitude = 255;
}
// Maximum total output was 32 channels times a 16-bit range. Map that down.
// TODO: dynamic total volume?
target[sample] = (output * output_range_) >> 20;
// Apply any RAM writes that interleave here.
++pending_store_read_time_;
if(!next_store.enabled) continue;
if(next_store.time != pending_store_read_time_) continue;
remote_.ram_[next_store.address] = next_store.value;
next_store.enabled = false;
pending_stores_[pending_store_read_].store(next_store, std::memory_order::memory_order_relaxed);
pending_store_read_ = (pending_store_read_ + 1) & (StoreBufferSize - 1);
}
}
uint8_t GLU::EnsoniqState::Oscillator::sample(uint8_t *ram) {
// Determines how many you'd have to shift a 16-bit pointer to the right for,
// in order to hit only the position-supplied bits.
const int pointer_shift = 8 - ((table_size >> 3) & 7);
// Table size mask should be 0x8000 for the largest table size, and 0xff00 for
// the smallest.
const uint16_t table_size_mask = 0xffff >> pointer_shift;
// The pointer should use (at most) 15 bits; starting with bit 1 for resolution 0
// and starting at bit 8 for resolution 7.
const uint16_t table_pointer = uint16_t(position >> ((table_size&7) + pointer_shift));
// The full pointer is composed of the bits of the programmed address not touched by
// the table pointer, plus the table pointer.
const uint16_t sample_address = ((address << 8) & ~table_size_mask) | (table_pointer & table_size_mask);
// Ignored here: bit 6 should select between RAM banks. But for now this is IIgs-centric,
// and that has only one bank of RAM.
return ram[sample_address];
}
int16_t GLU::EnsoniqState::Oscillator::output(uint8_t *ram) {
const auto level = sample(ram);
// "An oscillator will halt when a zero is encountered in its waveform table."
// TODO: only if in free-run mode, I think? Or?
if(!level) {
control |= 1;
return 0;
}
// Samples are unsigned 8-bit; do the proper work to make volume work correctly.
return int8_t(level ^ 128) * volume;
}