1
0
mirror of https://github.com/TomHarte/CLK.git synced 2024-07-07 23:29:06 +00:00
CLK/Outputs/CRT.cpp

223 lines
5.8 KiB
C++

//
// CRT.cpp
// Clock Signal
//
// Created by Thomas Harte on 19/07/2015.
// Copyright © 2015 Thomas Harte. All rights reserved.
//
#include "CRT.hpp"
#include <stdarg.h>
static const int bufferWidth = 512;
static const int bufferHeight = 512;
static const int syncCapacityLineChargeThreshold = 3;
static const int millisecondsHorizontalRetraceTime = 16;
using namespace Outputs;
CRT::CRT(int cycles_per_line, int number_of_buffers, ...)
{
_horizontalOffset = 0.0f;
_verticalOffset = 0.0f;
_numberOfBuffers = number_of_buffers;
_bufferSizes = new int[_numberOfBuffers];
_buffers = new uint8_t *[_numberOfBuffers];
va_list va;
va_start(va, number_of_buffers);
for(int c = 0; c < _numberOfBuffers; c++)
{
_bufferSizes[c] = va_arg(va, int);
_buffers[c] = new uint8_t[bufferHeight * bufferWidth * _bufferSizes[c]];
}
va_end(va);
_write_allocation_pointer = 0;
_cycles_per_line = cycles_per_line;
_expected_next_hsync = cycles_per_line;
_hsync_error_window = cycles_per_line / 10;
_horizontal_counter = 0;
_sync_capacitor_charge_level = 0;
_hretrace_counter = -1;
_is_in_sync = false;
_vsync_is_proposed = false;
}
CRT::~CRT()
{
delete[] _bufferSizes;
for(int c = 0; c < _numberOfBuffers; c++)
{
delete[] _buffers[c];
}
delete[] _buffers;
}
#pragma mark - Sync decisions
#define hretrace_period() ((millisecondsHorizontalRetraceTime * _cycles_per_line) >> 6)
void CRT::propose_hsync()
{
if (_horizontal_counter >= _expected_next_hsync - _hsync_error_window)
{
_expected_next_hsync = (_horizontal_counter + _expected_next_hsync) >> 1;
do_hsync();
}
else
{
printf("r %d\n", _horizontal_counter);
}
}
void CRT::charge_vsync(int number_of_cycles)
{
// will we start indicating hsync during this charge?
const int final_capacitor_charge_level = _sync_capacitor_charge_level + number_of_cycles;
const int required_capacitor_charge_level = syncCapacityLineChargeThreshold*_cycles_per_line;
if(_sync_capacitor_charge_level < required_capacitor_charge_level && final_capacitor_charge_level >= required_capacitor_charge_level)
{
const int cycles_until_vsync_starts = required_capacitor_charge_level - _sync_capacitor_charge_level;
run_line_for_cycles(cycles_until_vsync_starts);
_vsync_is_proposed = true;
run_line_for_cycles(number_of_cycles - cycles_until_vsync_starts);
}
else
{
run_line_for_cycles(number_of_cycles);
}
_sync_capacitor_charge_level += number_of_cycles;
}
void CRT::drain_vsync(int number_of_cycles)
{
// will we stop indicating hsync during this charge?
const int required_capacitor_charge_level = syncCapacityLineChargeThreshold*_cycles_per_line;
if(_sync_capacitor_charge_level >= required_capacitor_charge_level && _sync_capacitor_charge_level - number_of_cycles < required_capacitor_charge_level)
{
const int cycles_until_vsync_ends = _sync_capacitor_charge_level - required_capacitor_charge_level;
run_line_for_cycles(cycles_until_vsync_ends);
_vsync_is_proposed = false;
run_line_for_cycles(number_of_cycles - cycles_until_vsync_ends);
}
else
{
run_line_for_cycles(number_of_cycles);
}
_sync_capacitor_charge_level = std::max(0, _sync_capacitor_charge_level - number_of_cycles);
}
void CRT::run_line_for_cycles(int number_of_cycles)
{
// we're guaranteed not to see any vertical sync events during this run_for_cycles;
// will we see a horizontal?
if(!_hretrace_counter)
{
const int end_counter = _horizontal_counter + number_of_cycles;
const int last_allowed_retrace_time = _expected_next_hsync + _hsync_error_window;
if(end_counter >= last_allowed_retrace_time)
{
// there'll be a forced retrace, and we didn't detect a sync pulse so we'll
// push back towards the default period
const int cycles_before_retrace = end_counter - last_allowed_retrace_time;
run_hline_for_cycles(cycles_before_retrace);
do_hsync();
_hretrace_counter = hretrace_period();
_expected_next_hsync = (_expected_next_hsync + _cycles_per_line) >> 1;
run_hline_for_cycles(number_of_cycles - cycles_before_retrace);
}
else
{
// we'll just output, no big deal
run_hline_for_cycles(number_of_cycles);
}
}
else
{
if(_hretrace_counter - number_of_cycles < 0)
{
// we'll fully retrace and exit
number_of_cycles -= _hretrace_counter;
run_hline_for_cycles(number_of_cycles - _hretrace_counter);
_hretrace_counter = 0;
}
else
{
// we'll spend this whole period retracing
_hretrace_counter -= number_of_cycles;
}
_hretrace_counter = std::max(0, _hretrace_counter - number_of_cycles);
}
}
void CRT::run_hline_for_cycles(int number_of_cycles)
{
_horizontal_counter += number_of_cycles;
}
void CRT::do_hsync()
{
printf("%d\n", _horizontal_counter);
_hretrace_counter = hretrace_period();
_horizontal_counter = 0;
}
#pragma mark - stream feeding methods
void CRT::output_sync(int number_of_cycles)
{
// printf("[%d]\n", number_of_cycles);
//
// if(number_of_cycles > 16)
// {
// printf("!!!\n");
// }
// horizontal sync is edge triggered
if(!_is_in_sync)
{
_is_in_sync = true;
propose_hsync();
}
charge_vsync(number_of_cycles);
}
void CRT::output_level(int number_of_cycles, std::string type)
{
_is_in_sync = false;
drain_vsync(number_of_cycles);
}
void CRT::output_data(int number_of_cycles, std::string type)
{
_is_in_sync = false;
drain_vsync(number_of_cycles);
}
#pragma mark - Buffer supply
void CRT::allocate_write_area(int required_length)
{
int xPos = _write_allocation_pointer & (bufferWidth - 1);
if (xPos + required_length > bufferWidth)
{
_write_allocation_pointer &= ~(bufferWidth - 1);
_write_allocation_pointer = (_write_allocation_pointer + bufferWidth) & ((bufferHeight-1) * bufferWidth);
}
_write_target_pointer = _write_allocation_pointer;
_write_allocation_pointer += required_length;
}
uint8_t *CRT::get_write_target_for_buffer(int buffer)
{
return &_buffers[buffer][_write_target_pointer * _bufferSizes[buffer]];
}