1
0
mirror of https://github.com/TomHarte/CLK.git synced 2024-11-22 12:33:29 +00:00
CLK/InstructionSets/ARM/Executor.hpp
2024-04-29 22:45:30 -04:00

670 lines
23 KiB
C++

//
// Executor.hpp
// Clock Signal
//
// Created by Thomas Harte on 01/03/2024.
// Copyright © 2024 Thomas Harte. All rights reserved.
//
#pragma once
#include "BarrelShifter.hpp"
#include "OperationMapper.hpp"
#include "Registers.hpp"
#include "../../Numeric/Carry.hpp"
namespace InstructionSet::ARM {
/// Maps from a semantic ARM read of type @c SourceT to either the 8- or 32-bit value observed
/// by watching the low 8 bits or all 32 bits of the data bus.
template <typename DestinationT, typename SourceT>
DestinationT read_bus(SourceT value) {
if constexpr (std::is_same_v<DestinationT, SourceT>) {
return value;
}
if constexpr (std::is_same_v<DestinationT, uint8_t>) {
return uint8_t(value);
} else {
return value | (value << 8) | (value << 16) | (value << 24);
}
}
struct NullControlFlowHandler {
/// Indicates that a potential pipeline-affecting status flag change occurred,
/// i.e. a change to processor mode or interrupt flags.
void did_set_status() {}
/// Indicates that the PC was altered by the instruction.
void did_set_pc() {}
/// Provides notification that an SWI is about to happen along with the option of skipping it; this gives handlers the
/// chance to substitute a high-level reimplementation of the service call.
bool should_swi([[maybe_unused]] uint32_t comment) { return true; }
};
/// A class compatible with the @c OperationMapper definition of a scheduler which applies all actions
/// immediately, updating either a set of @c Registers or using the templated @c MemoryT to access
/// memory. No hooks are currently provided for applying realistic timing.
///
/// If a ControlFlowHandlerT is specified, it'll receive calls as defined in the NullControlFlowHandler above.
template <Model model, typename MemoryT, typename ControlFlowHandlerT = NullControlFlowHandler>
struct Executor {
template <typename... Args>
Executor(ControlFlowHandlerT &handler, Args &&...args) : bus(std::forward<Args>(args)...), control_flow_handler_(handler) {}
template <typename... Args>
Executor(Args &&...args) : bus(std::forward<Args>(args)...) {}
/// @returns @c true if @c condition implies an appropriate perform call should be made for this instruction,
/// @c false otherwise.
bool should_schedule(Condition condition) {
// This short-circuit of registers_.test provides the necessary compiler clue that
// Condition::AL is not only [[likely]] but [[exceedingly likely]].
return condition == Condition::AL ? true : registers_.test(condition);
}
template <bool allow_register, bool set_carry, typename FieldsT>
uint32_t decode_shift(FieldsT fields, uint32_t &rotate_carry, uint32_t pc_offset) {
// "When R15 appears in the Rm position it will give the value of the PC together
// with the PSR flags to the barrel shifter. ...
//
// If the shift amount is specified in the instruction, the PC will be 8 bytes ahead.
// If a register is used to specify the shift amount, the PC will be ... 12 bytes ahead
// when used as Rn or Rm."
uint32_t operand2;
if(fields.operand2() == 15) {
operand2 = registers_.pc_status(pc_offset);
} else {
operand2 = registers_[fields.operand2()];
}
// TODO: in C++20, a quick `if constexpr (requires` can eliminate the `allow_register` parameter.
if constexpr (allow_register) {
if(fields.shift_count_is_register()) {
uint32_t shift_amount;
// "When R15 appears in either of the Rn or Rs positions it will give the value
// of the PC alone, with the PSR bits replaced by zeroes. ...
//
// If a register is used to specify the shift amount, the
// PC will be 8 bytes ahead when used as Rs."
shift_amount =
fields.shift_register() == 15 ?
registers_.pc(4) :
registers_[fields.shift_register()];
// "The amount by which the register should be shifted may be contained in
// ... **the bottom byte** of another register".
shift_amount &= 0xff;
shift<set_carry, false>(fields.shift_type(), operand2, shift_amount, rotate_carry);
return operand2;
}
}
shift<set_carry, true>(fields.shift_type(), operand2, fields.shift_amount(), rotate_carry);
return operand2;
}
template <Flags f> void perform(DataProcessing fields) {
constexpr DataProcessingFlags flags(f);
const bool shift_by_register = !flags.operand2_is_immediate() && fields.shift_count_is_register();
// Write a raw result into the PC proxy if the target is R15; it'll be stored properly later.
uint32_t pc_proxy = 0;
auto &destination = fields.destination() == 15 ? pc_proxy : registers_[fields.destination()];
// "When R15 appears in either of the Rn or Rs positions it will give the value
// of the PC alone, with the PSR bits replaced by zeroes. ...
//
// If the shift amount is specified in the instruction, the PC will be 8 bytes ahead.
// If a register is used to specify the shift amount, the PC will be ... 12 bytes ahead
// when used as Rn or Rm."
const uint32_t operand1 =
(fields.operand1() == 15) ?
registers_.pc(shift_by_register ? 8 : 4) :
registers_[fields.operand1()];
uint32_t operand2;
uint32_t rotate_carry = registers_.c();
// Populate carry from the shift only if it'll be used.
constexpr bool shift_sets_carry = is_logical(flags.operation()) && flags.set_condition_codes();
// Get operand 2.
if constexpr (flags.operand2_is_immediate()) {
operand2 = fields.immediate();
shift<ShiftType::RotateRight, shift_sets_carry, false>(operand2, fields.rotate(), rotate_carry);
} else {
operand2 = decode_shift<true, shift_sets_carry>(fields, rotate_carry, shift_by_register ? 8 : 4);
}
uint32_t conditions = 0;
const auto sub = [&](uint32_t lhs, uint32_t rhs) {
conditions = lhs - rhs;
if constexpr (flags.operation() == DataProcessingOperation::SBC || flags.operation() == DataProcessingOperation::RSC) {
conditions += registers_.c() - 1;
}
if constexpr (flags.set_condition_codes()) {
// "For a subtraction, including the comparison instruction CMP, C is set to 0 if
// the subtraction produced a borrow (that is, an unsigned underflow), and to 1 otherwise."
registers_.set_c(!Numeric::carried_out<false, 31>(lhs, rhs, conditions));
registers_.set_v(Numeric::overflow<false>(lhs, rhs, conditions));
}
if constexpr (!is_comparison(flags.operation())) {
destination = conditions;
}
};
// Perform the data processing operation.
switch(flags.operation()) {
// Logical operations.
case DataProcessingOperation::AND: conditions = destination = operand1 & operand2; break;
case DataProcessingOperation::EOR: conditions = destination = operand1 ^ operand2; break;
case DataProcessingOperation::ORR: conditions = destination = operand1 | operand2; break;
case DataProcessingOperation::BIC: conditions = destination = operand1 & ~operand2; break;
case DataProcessingOperation::MOV: conditions = destination = operand2; break;
case DataProcessingOperation::MVN: conditions = destination = ~operand2; break;
case DataProcessingOperation::TST: conditions = operand1 & operand2; break;
case DataProcessingOperation::TEQ: conditions = operand1 ^ operand2; break;
case DataProcessingOperation::ADD:
case DataProcessingOperation::ADC:
case DataProcessingOperation::CMN:
conditions = operand1 + operand2;
if constexpr (flags.operation() == DataProcessingOperation::ADC) {
conditions += registers_.c();
}
if constexpr (flags.set_condition_codes()) {
registers_.set_c(Numeric::carried_out<true, 31>(operand1, operand2, conditions));
registers_.set_v(Numeric::overflow<true>(operand1, operand2, conditions));
}
if constexpr (!is_comparison(flags.operation())) {
destination = conditions;
}
break;
case DataProcessingOperation::SUB:
case DataProcessingOperation::SBC:
case DataProcessingOperation::CMP:
sub(operand1, operand2);
break;
case DataProcessingOperation::RSB:
case DataProcessingOperation::RSC:
sub(operand2, operand1);
break;
}
if(!is_comparison(flags.operation()) && fields.destination() == 15) {
set_pc<true>(pc_proxy);
}
if constexpr (flags.set_condition_codes()) {
// "When Rd is R15 and the S flag in the instruction is set, the PSR is overwritten by the
// corresponding bits in the ALU result... [even] if the instruction is of a type that does not
// normally produce a result (CMP, CMN, TST, TEQ) ... the result will be used to update those
// PSR flags which are not protected by virtue of the processor mode"
if(fields.destination() == 15) {
set_status(conditions);
} else {
// Set N and Z in a unified way.
registers_.set_nz(conditions);
// Set C from the barrel shifter if applicable.
if constexpr (shift_sets_carry) {
registers_.set_c(rotate_carry);
}
}
}
}
template <Flags f> void perform(Multiply fields) {
constexpr MultiplyFlags flags(f);
// R15 rules:
//
// * Rs: no PSR, 8 bytes ahead;
// * Rn: with PSR, 8 bytes ahead;
// * Rm: with PSR, 12 bytes ahead.
const uint32_t multiplicand = fields.multiplicand() == 15 ? registers_.pc(4) : registers_[fields.multiplicand()];
const uint32_t multiplier = fields.multiplier() == 15 ? registers_.pc_status(4) : registers_[fields.multiplier()];
const uint32_t accumulator =
flags.operation() == MultiplyFlags::Operation::MUL ? 0 :
(fields.multiplicand() == 15 ? registers_.pc_status(8) : registers_[fields.accumulator()]);
const uint32_t result = multiplicand * multiplier + accumulator;
if constexpr (flags.set_condition_codes()) {
registers_.set_nz(result);
// V is unaffected; C is undefined.
}
if(fields.destination() != 15) {
registers_[fields.destination()] = result;
}
}
template <Flags f> void perform(Branch branch) {
constexpr BranchFlags flags(f);
if constexpr (flags.operation() == BranchFlags::Operation::BL) {
registers_[14] = registers_.pc_status(0);
}
set_pc<true>(registers_.pc(4) + branch.offset());
}
template <Flags f> void perform(SingleDataTransfer transfer) {
constexpr SingleDataTransferFlags flags(f);
// Calculate offset.
uint32_t offset;
if constexpr (flags.offset_is_register()) {
// The 8 shift control bits are described in 6.2.3, but
// the register specified shift amounts are not available
// in this instruction class.
uint32_t carry = registers_.c();
offset = decode_shift<false, false>(transfer, carry, 4);
} else {
offset = transfer.immediate();
}
// Obtain base address.
uint32_t address =
transfer.base() == 15 ?
registers_.pc(4) :
registers_[transfer.base()];
// Determine what the address will be after offsetting.
uint32_t offsetted_address = address;
if constexpr (flags.add_offset()) {
offsetted_address += offset;
} else {
offsetted_address -= offset;
}
// If preindexing, apply now.
if constexpr (flags.pre_index()) {
address = offsetted_address;
}
// Check for an address exception.
if(is_invalid_address(address)) {
exception<Registers::Exception::Address>();
return;
}
// Decide whether to write back — when either postindexing or else write back is requested.
//
// Note to future self on write-back:
//
// It's currently unclear what to do in the case of e.g. `str r13, [r13, #0x10]!`. Is the value
// written r13 as modified or the original r13? If it's as modified, does that imply that
// write back has occurred regardless of a data abort?
//
// TODO: resolve uncertainty.
constexpr bool should_write_back = !flags.pre_index() || flags.write_back_address();
// "... post-indexed data transfers always write back the modified base. The only use of the [write-back address]
// bit in a post-indexed data transfer is in non-user mode code, where setting the W bit forces the /TRANS pin
// to go LOW for the transfer"
const bool trans = (registers_.mode() == Mode::User) || (!flags.pre_index() && flags.write_back_address());
if constexpr (flags.operation() == SingleDataTransferFlags::Operation::STR) {
const uint32_t source =
transfer.source() == 15 ?
registers_.pc_status(8) :
registers_[transfer.source()];
bool did_write;
if constexpr (flags.transfer_byte()) {
did_write = bus.template write<uint8_t>(address, uint8_t(source), registers_.mode(), trans);
} else {
// "The data presented to the data bus are not affected if the address is not word aligned".
did_write = bus.template write<uint32_t>(address, source, registers_.mode(), trans);
}
if(!did_write) {
exception<Registers::Exception::DataAbort>();
return;
}
} else {
bool did_read;
uint32_t value = 0;
if constexpr (flags.transfer_byte()) {
uint8_t target = 0; // Value should never be used; this avoids a spurious GCC warning.
did_read = bus.template read<uint8_t>(address, target, registers_.mode(), trans);
if(did_read) {
value = target;
}
} else {
did_read = bus.template read<uint32_t>(address, value, registers_.mode(), trans);
if constexpr (model != Model::ARMv2with32bitAddressing) {
// "An address offset from a word boundary will cause the data to be rotated into the
// register so that the addressed byte occuplies bits 0 to 7."
//
// (though the test set that inspired 'ARMv2with32bitAddressing' appears not to honour this;
// test below assumes it went away by the version of ARM that set supports)
switch(address & 3) {
case 0: break;
case 1: value = (value >> 8) | (value << 24); break;
case 2: value = (value >> 16) | (value << 16); break;
case 3: value = (value >> 24) | (value << 8); break;
}
}
}
if(!did_read) {
exception<Registers::Exception::DataAbort>();
return;
}
if(transfer.destination() == 15) {
set_pc<true>(value);
} else {
registers_[transfer.destination()] = value;
}
}
if constexpr (should_write_back) {
// Empirically: I think order of operations for a load is: (i) write back; (ii) store value from bus.
// So if this is a load, don't allow write back to overwrite what was loaded.
if(flags.operation() == SingleDataTransferFlags::Operation::STR || transfer.base() != transfer.destination()) {
if(transfer.base() == 15) {
set_pc<true>(offsetted_address);
} else {
registers_[transfer.base()] = offsetted_address;
}
}
}
}
template <Flags f> void perform(BlockDataTransfer transfer) {
constexpr BlockDataTransferFlags flags(f);
constexpr bool is_ldm = flags.operation() == BlockDataTransferFlags::Operation::LDM;
// Ensure that *base points to the base register if it can be written back;
// also set address to the base.
uint32_t *base = nullptr;
uint32_t address;
if(transfer.base() == 15) {
address = registers_.pc_status(4);
} else {
base = &registers_[transfer.base()];
address = *base;
}
// For an LDM pc_proxy will receive any read R15 value;
// for an STM it'll hold the value to be written.
uint32_t pc_proxy = 0;
// Read the base address and take a copy in case a data abort means that
// it has to be restored later.
uint32_t initial_address = address;
// Grab the register list and decide whether user registers are being used.
const uint16_t list = transfer.register_list();
const bool adopt_user_mode = flags.load_psr() && (!is_ldm || !(list & (1 << 15)));
// Write back will prima facie occur if:
// (i) the instruction asks for it; and
// (ii) the write-back register isn't R15.
bool write_back = base && flags.write_back_address();
// Collate a transfer list; this is a very long-winded way of implementing STM
// and LDM but right now the objective is merely correctness.
//
// If this is LDM and it turns out that base is also in the transfer list,
// disable write back.
uint32_t *transfer_sources[16];
uint32_t total = 0;
for(uint32_t c = 0; c < 15; c++) {
if(list & (1 << c)) {
uint32_t *const next = &registers_.reg(adopt_user_mode, c);
if(is_ldm && next == base) write_back = false;
transfer_sources[total++] = next;
}
}
// If the last thing in the list is R15, redirect it to the PC proxy,
// possibly populating with a meaningful value.
if(list & (1 << 15)) {
if(!is_ldm) {
pc_proxy = registers_.pc_status(8);
}
transfer_sources[total++] = &pc_proxy;
}
// If this is STM and the first thing in the list is the same as base,
// point it at initial_address instead.
if(!is_ldm && total && transfer_sources[0] == base) {
transfer_sources[0] = &initial_address;
}
// Calculate final_address, which is what will be written back if required;
// update address to point to the low end of the transfer block.
//
// Writes are always ordered from lowest address to highest; adjust the
// start address if this write is supposed to fill memory downward from
// the base.
uint32_t final_address;
if constexpr (!flags.add_offset()) {
// Decrementing mode; final_address is the value the base register should
// have after this operation if writeback is enabled, so it's below
// the original address. But also writes always occur from lowest address
// to highest, so push the current address to the bottom.
final_address = address - total * 4;
address = final_address;
} else {
final_address = address + total * 4;
}
// Write back if enabled.
if(write_back) {
*base = final_address;
}
// Update address in advance for:
// * pre-indexed upward stores; and
// * post-indxed downward stores.
if constexpr (flags.pre_index() == flags.add_offset()) {
address += 4;
}
// Perform all memory accesses, tracking whether either kind of abort will be
// required.
const bool trans = registers_.mode() == Mode::User;
const bool address_error = is_invalid_address(address);
bool accesses_succeeded = true;
if constexpr (is_ldm) {
// Keep a record of the value replaced by the last load and
// where it came from. A data abort cancels both the current load and
// the one before it, so this might be used by this implementation to
// undo the previous load.
struct {
uint32_t *target = nullptr;
uint32_t value = 0;
} last_replacement;
for(uint32_t c = 0; c < total; c++) {
uint32_t &value = *transfer_sources[c];
// When ARM detects a data abort during a load multiple instruction, it modifies the operation of
// the instruction to ensure that recovery is possible.
//
// * Overwriting of registers stops when the abort happens. The aborting load will not
// take place, nor will the preceding one ...
// * The base register is restored, to its modified value if write-back was requested.
if(accesses_succeeded) {
const uint32_t replaced = value;
accesses_succeeded &= bus.template read<uint32_t>(address, value, registers_.mode(), trans);
// Update the last-modified slot if the access succeeded; otherwise
// undo the last modification if there was one, and undo the base
// address change.
if(accesses_succeeded) {
last_replacement.value = replaced;
last_replacement.target = transfer_sources[c];
} else {
if(last_replacement.target) {
*last_replacement.target = last_replacement.value;
}
// Also restore the base register, including to its original value
// if write back was disabled.
if(base) {
if(write_back) {
*base = final_address;
} else {
*base = initial_address;
}
}
}
} else {
// Implicitly: do the access anyway, but don't store the value. I think.
uint32_t throwaway;
bus.template read<uint32_t>(address, throwaway, registers_.mode(), trans);
}
// Advance.
address += 4;
}
} else {
for(uint32_t c = 0; c < total; c++) {
uint32_t &value = *transfer_sources[c];
if(!address_error) {
// "If the abort occurs during a store multiple instruction, ARM takes little action until
// the instruction completes, whereupon it enters the data abort trap. The memory manager is
// responsible for preventing erroneous writes to the memory."
accesses_succeeded &= bus.template write<uint32_t>(address, value, registers_.mode(), trans);
} else {
// Do a throwaway read.
uint32_t throwaway;
bus.template read<uint32_t>(address, throwaway, registers_.mode(), trans);
}
// Advance.
address += 4;
}
}
// Finally throw an exception if necessary.
if(address_error) {
exception<Registers::Exception::Address>();
} else if(!accesses_succeeded) {
exception<Registers::Exception::DataAbort>();
} else {
// If this was an LDM to R15 then apply it appropriately.
if(is_ldm && list & (1 << 15)) {
set_pc<true>(pc_proxy);
if constexpr (flags.load_psr()) {
set_status(pc_proxy);
}
}
}
}
void software_interrupt(SoftwareInterrupt swi) {
if(control_flow_handler_.should_swi(swi.comment())) {
exception<Registers::Exception::SoftwareInterrupt>();
}
}
void unknown() {
exception<Registers::Exception::UndefinedInstruction>();
}
// Act as if no coprocessors present.
template <Flags> void perform(CoprocessorRegisterTransfer) {
exception<Registers::Exception::UndefinedInstruction>();
}
template <Flags> void perform(CoprocessorDataOperation) {
exception<Registers::Exception::UndefinedInstruction>();
}
template <Flags> void perform(CoprocessorDataTransfer) {
exception<Registers::Exception::UndefinedInstruction>();
}
/// @returns The current registers state.
const Registers &registers() const {
return registers_;
}
// Included primarily for testing; my full opinion on this is still
// incompletely-formed.
Registers &registers() {
return registers_;
}
/// Indicates a prefetch abort exception.
void prefetch_abort() {
exception<Registers::Exception::PrefetchAbort>();
}
/// Sets the expected address of the instruction after whichever is about to be executed.
/// So it's PC+4 compared to most other systems.
///
/// By default this is not forwarded to the control-flow handler.
template <bool notify = false>
void set_pc(uint32_t pc) {
registers_.set_pc(pc);
if constexpr (notify) {
control_flow_handler_.did_set_pc();
}
}
/// @returns The address of the instruction that should be fetched next. So as execution of each instruction
/// begins, this will be +4 from the instruction being executed; at the end of the instruction it'll either still be +4
/// or else be some other address if a branch or exception has occurred.
uint32_t pc() const {
return registers_.pc(0);
}
MemoryT bus;
private:
template <Registers::Exception type>
void exception() {
registers_.exception<type>();
control_flow_handler_.did_set_pc();
}
void set_status(uint32_t status) {
registers_.set_status(status);
control_flow_handler_.did_set_status();
}
using ControlFlowHandlerTStorage =
typename std::conditional<
std::is_same_v<ControlFlowHandlerT, NullControlFlowHandler>,
ControlFlowHandlerT,
ControlFlowHandlerT &>::type;
ControlFlowHandlerTStorage control_flow_handler_;
Registers registers_;
static bool is_invalid_address(uint32_t address) {
if constexpr (model == Model::ARMv2with32bitAddressing) {
return false;
}
return address >= 1 << 26;
}
};
/// Executes the instruction @c instruction which should have been fetched from @c executor.pc(),
/// modifying @c executor.
template <Model model, typename MemoryT, typename StatusObserverT>
void execute(uint32_t instruction, Executor<model, MemoryT, StatusObserverT> &executor) {
executor.set_pc(executor.pc() + 4);
dispatch<model>(instruction, executor);
}
}