mirror of
https://github.com/TomHarte/CLK.git
synced 2024-11-25 16:31:42 +00:00
490 lines
15 KiB
Plaintext
490 lines
15 KiB
Plaintext
//
|
|
// ARMDecoderTests.m
|
|
// Clock Signal
|
|
//
|
|
// Created by Thomas Harte on 16/02/2024.
|
|
// Copyright 2024 Thomas Harte. All rights reserved.
|
|
//
|
|
|
|
#import <XCTest/XCTest.h>
|
|
|
|
#include "../../../InstructionSets/ARM/BarrelShifter.hpp"
|
|
#include "../../../InstructionSets/ARM/OperationMapper.hpp"
|
|
#include "../../../InstructionSets/ARM/Registers.hpp"
|
|
#include "../../../Numeric/Carry.hpp"
|
|
|
|
using namespace InstructionSet::ARM;
|
|
|
|
namespace {
|
|
|
|
struct Memory {
|
|
template <typename IntT>
|
|
bool write(uint32_t address, IntT source, Mode mode, bool trans) {
|
|
(void)address;
|
|
(void)source;
|
|
(void)mode;
|
|
(void)trans;
|
|
return true;
|
|
}
|
|
|
|
template <typename IntT>
|
|
bool read(uint32_t address, IntT &source, Mode mode, bool trans) {
|
|
(void)address;
|
|
(void)source;
|
|
(void)mode;
|
|
(void)trans;
|
|
return true;
|
|
}
|
|
};
|
|
|
|
template <typename MemoryT>
|
|
struct Scheduler {
|
|
bool should_schedule(Condition condition) {
|
|
return registers_.test(condition);
|
|
}
|
|
|
|
template <bool allow_register, bool set_carry, typename FieldsT>
|
|
uint32_t decode_shift(FieldsT fields, uint32_t &rotate_carry, uint32_t pc_offset) {
|
|
uint32_t shift_amount;
|
|
if constexpr (allow_register) {
|
|
if(fields.shift_count_is_register()) {
|
|
// "When R15 appears in either of the Rn or Rs positions it will give the value
|
|
// of the PC alone, with the PSR bits replaced by zeroes. ...
|
|
//
|
|
// If a register is used to specify the shift amount, the
|
|
// PC will be 8 bytes ahead when used as Rs."
|
|
shift_amount =
|
|
fields.shift_register() == 15 ?
|
|
registers_.pc(8) :
|
|
registers_.active[fields.shift_register()];
|
|
} else {
|
|
shift_amount = fields.shift_amount();
|
|
}
|
|
} else {
|
|
shift_amount = fields.shift_amount();
|
|
}
|
|
|
|
// "When R15 appears in the Rm position it will give the value of the PC together
|
|
// with the PSR flags to the barrel shifter. ...
|
|
//
|
|
// If the shift amount is specified in the instruction, the PC will be 8 bytes ahead.
|
|
// If a register is used to specify the shift amount, the PC will be ... 12 bytes ahead
|
|
// when used as Rn or Rm."
|
|
uint32_t operand2;
|
|
if(fields.operand2() == 15) {
|
|
operand2 = registers_.pc_status(pc_offset);
|
|
} else {
|
|
operand2 = registers_.active[fields.operand2()];
|
|
}
|
|
shift<set_carry>(fields.shift_type(), operand2, shift_amount, rotate_carry);
|
|
|
|
return operand2;
|
|
}
|
|
|
|
template <Flags f> void perform(DataProcessing fields) {
|
|
constexpr DataProcessingFlags flags(f);
|
|
const bool shift_by_register = !flags.operand2_is_immediate() && fields.shift_count_is_register();
|
|
|
|
// Write a raw result into the PC proxy if the target is R15; it'll be stored properly later.
|
|
uint32_t pc_proxy = 0;
|
|
auto &destination = fields.destination() == 15 ? pc_proxy : registers_.active[fields.destination()];
|
|
|
|
// "When R15 appears in either of the Rn or Rs positions it will give the value
|
|
// of the PC alone, with the PSR bits replaced by zeroes. ...
|
|
//
|
|
// If the shift amount is specified in the instruction, the PC will be 8 bytes ahead.
|
|
// If a register is used to specify the shift amount, the PC will be ... 12 bytes ahead
|
|
// when used as Rn or Rm."
|
|
const uint32_t operand1 =
|
|
(fields.operand1() == 15) ?
|
|
registers_.pc(shift_by_register ? 12 : 8) :
|
|
registers_.active[fields.operand1()];
|
|
|
|
uint32_t operand2;
|
|
uint32_t rotate_carry = registers_.c();
|
|
|
|
// Populate carry from the shift only if it'll be used.
|
|
constexpr bool shift_sets_carry = is_logical(flags.operation()) && flags.set_condition_codes();
|
|
|
|
// Get operand 2.
|
|
if constexpr (flags.operand2_is_immediate()) {
|
|
operand2 = fields.immediate();
|
|
if(fields.rotate()) {
|
|
shift<ShiftType::RotateRight, shift_sets_carry>(operand2, fields.rotate(), rotate_carry);
|
|
}
|
|
} else {
|
|
operand2 = decode_shift<true, shift_sets_carry>(fields, rotate_carry, shift_by_register ? 12 : 8);
|
|
}
|
|
|
|
// Perform the data processing operation.
|
|
uint32_t conditions = 0;
|
|
switch(flags.operation()) {
|
|
// Logical operations.
|
|
case DataProcessingOperation::AND: conditions = destination = operand1 & operand2; break;
|
|
case DataProcessingOperation::EOR: conditions = destination = operand1 ^ operand2; break;
|
|
case DataProcessingOperation::ORR: conditions = destination = operand1 | operand2; break;
|
|
case DataProcessingOperation::BIC: conditions = destination = operand1 & ~operand2; break;
|
|
|
|
case DataProcessingOperation::MOV: conditions = destination = operand2; break;
|
|
case DataProcessingOperation::MVN: conditions = destination = ~operand2; break;
|
|
|
|
case DataProcessingOperation::TST: conditions = operand1 & operand2; break;
|
|
case DataProcessingOperation::TEQ: conditions = operand1 ^ operand2; break;
|
|
|
|
case DataProcessingOperation::ADD:
|
|
case DataProcessingOperation::ADC:
|
|
case DataProcessingOperation::CMN:
|
|
conditions = operand1 + operand2;
|
|
|
|
if constexpr (flags.operation() == DataProcessingOperation::ADC) {
|
|
conditions += registers_.c();
|
|
}
|
|
|
|
if constexpr (flags.set_condition_codes()) {
|
|
registers_.set_c(Numeric::carried_out<true, 31>(operand1, operand2, conditions));
|
|
registers_.set_v(Numeric::overflow<true>(operand1, operand2, conditions));
|
|
}
|
|
|
|
if constexpr (!is_comparison(flags.operation())) {
|
|
destination = conditions;
|
|
}
|
|
break;
|
|
|
|
case DataProcessingOperation::SUB:
|
|
case DataProcessingOperation::SBC:
|
|
case DataProcessingOperation::CMP:
|
|
conditions = operand1 - operand2;
|
|
|
|
if constexpr (flags.operation() == DataProcessingOperation::SBC) {
|
|
conditions -= registers_.c();
|
|
}
|
|
|
|
if constexpr (flags.set_condition_codes()) {
|
|
registers_.set_c(Numeric::carried_out<false, 31>(operand1, operand2, conditions));
|
|
registers_.set_v(Numeric::overflow<false>(operand1, operand2, conditions));
|
|
}
|
|
|
|
if constexpr (!is_comparison(flags.operation())) {
|
|
destination = conditions;
|
|
}
|
|
break;
|
|
|
|
case DataProcessingOperation::RSB:
|
|
case DataProcessingOperation::RSC:
|
|
conditions = operand2 - operand1;
|
|
|
|
if constexpr (flags.operation() == DataProcessingOperation::RSC) {
|
|
conditions -= registers_.c();
|
|
}
|
|
|
|
if constexpr (flags.set_condition_codes()) {
|
|
registers_.set_c(Numeric::carried_out<false, 31>(operand2, operand1, conditions));
|
|
registers_.set_v(Numeric::overflow<false>(operand2, operand1, conditions));
|
|
}
|
|
|
|
destination = conditions;
|
|
break;
|
|
}
|
|
|
|
if constexpr (flags.set_condition_codes()) {
|
|
// "When Rd is a register other than R15, the condition code flags in the PSR may be
|
|
// updated from the ALU flags as described above. When Rd is R15 and the S flag in
|
|
// the instruction is set, the PSR is overwritten by the corresponding ALU result.
|
|
//
|
|
// ... if the instruction is of a type which does not normally produce a result
|
|
// (CMP, CMN, TST, TEQ) but Rd is R15 and the S bit is set, the result will be used in
|
|
// this case to update those PSR flags which are not protected by virtue of the
|
|
// processor mode."
|
|
|
|
if(fields.destination() == 15) {
|
|
if constexpr (is_comparison(flags.operation())) {
|
|
registers_.set_status(pc_proxy);
|
|
} else {
|
|
registers_.set_status(pc_proxy);
|
|
registers_.set_pc(pc_proxy);
|
|
}
|
|
} else {
|
|
// Set N and Z in a unified way.
|
|
registers_.set_nz(conditions);
|
|
|
|
// Set C from the barrel shifter if applicable.
|
|
if constexpr (shift_sets_carry) {
|
|
registers_.set_c(rotate_carry);
|
|
}
|
|
}
|
|
} else {
|
|
// "If the S flag is clear when Rd is R15, only the 24 PC bits of R15 will be written."
|
|
if(fields.destination() == 15) {
|
|
registers_.set_pc(pc_proxy);
|
|
}
|
|
}
|
|
}
|
|
|
|
template <Flags f> void perform(Multiply fields) {
|
|
constexpr MultiplyFlags flags(f);
|
|
|
|
// R15 rules:
|
|
//
|
|
// * Rs: no PSR, 8 bytes ahead;
|
|
// * Rn: with PSR, 8 bytes ahead;
|
|
// * Rm: with PSR, 12 bytes ahead.
|
|
|
|
const uint32_t multiplicand = fields.multiplicand() == 15 ? registers_.pc(8) : registers_.active[fields.multiplicand()];
|
|
const uint32_t multiplier = fields.multiplier() == 15 ? registers_.pc_status(8) : registers_.active[fields.multiplier()];
|
|
const uint32_t accumulator =
|
|
flags.operation() == MultiplyFlags::Operation::MUL ? 0 :
|
|
(fields.multiplicand() == 15 ? registers_.pc_status(12) : registers_.active[fields.accumulator()]);
|
|
|
|
const uint32_t result = multiplicand * multiplier + accumulator;
|
|
|
|
if constexpr (flags.set_condition_codes()) {
|
|
registers_.set_nz(result);
|
|
// V is unaffected; C is undefined.
|
|
}
|
|
|
|
if(fields.destination() != 15) {
|
|
registers_.active[fields.destination()] = result;
|
|
}
|
|
}
|
|
|
|
template <Flags f> void perform(Branch branch) {
|
|
constexpr BranchFlags flags(f);
|
|
|
|
if constexpr (flags.operation() == BranchFlags::Operation::BL) {
|
|
registers_.active[14] = registers_.pc(4);
|
|
}
|
|
registers_.set_pc(registers_.pc(8) + branch.offset());
|
|
}
|
|
|
|
template <Flags f> void perform(SingleDataTransfer transfer) {
|
|
constexpr SingleDataTransferFlags flags(f);
|
|
|
|
// Calculate offset.
|
|
uint32_t offset;
|
|
if constexpr (flags.offset_is_immediate()) {
|
|
offset = transfer.immediate();
|
|
} else {
|
|
// The 8 shift control bits are described in 6.2.3, but
|
|
// the register specified shift amounts are not available
|
|
// in this instruction class.
|
|
uint32_t carry = registers_.c();
|
|
offset = decode_shift<false, false>(transfer, carry, 8);
|
|
}
|
|
|
|
// Obtain base address.
|
|
uint32_t address =
|
|
transfer.base() == 15 ?
|
|
registers_.pc(8) :
|
|
registers_.active[transfer.base()];
|
|
|
|
// Determine what the address will be after offsetting.
|
|
uint32_t offsetted_address = address;
|
|
if constexpr (flags.add_offset()) {
|
|
offsetted_address += offset;
|
|
} else {
|
|
offsetted_address -= offset;
|
|
}
|
|
|
|
// If preindexing, apply now.
|
|
if constexpr (flags.pre_index()) {
|
|
address = offsetted_address;
|
|
}
|
|
|
|
// Check for an address exception.
|
|
if(address >= (1 << 26)) {
|
|
registers_.exception<Registers::Exception::Address>();
|
|
return;
|
|
}
|
|
|
|
constexpr bool trans = !flags.pre_index() && flags.write_back_address();
|
|
if constexpr (flags.operation() == SingleDataTransferFlags::Operation::STR) {
|
|
const uint32_t source =
|
|
transfer.source() == 15 ?
|
|
registers_.pc_status(12) :
|
|
registers_.active[transfer.source()];
|
|
|
|
bool did_write;
|
|
if constexpr (flags.transfer_byte()) {
|
|
did_write = bus_.template write<uint8_t>(address, uint8_t(source), registers_.mode(), trans);
|
|
} else {
|
|
// "The data presented to the data bus are not affected if the address is not word aligned".
|
|
did_write = bus_.template write<uint32_t>(address, source, registers_.mode(), trans);
|
|
}
|
|
|
|
if(!did_write) {
|
|
registers_.exception<Registers::Exception::DataAbort>();
|
|
return;
|
|
}
|
|
} else {
|
|
bool did_read;
|
|
uint32_t value;
|
|
|
|
if constexpr (flags.transfer_byte()) {
|
|
uint8_t target;
|
|
did_read = bus_.template read<uint8_t>(address, target, registers_.mode(), trans);
|
|
value = target;
|
|
} else {
|
|
did_read = bus_.template read<uint32_t>(address, value, registers_.mode(), trans);
|
|
|
|
// "An address offset from a word boundary will cause the data to be rotated into the
|
|
// register so that the addressed byte occuplies bits 0 to 7."
|
|
switch(address & 3) {
|
|
case 0: break;
|
|
case 1: value = (value >> 8) | (value << 24); break;
|
|
case 2: value = (value >> 16) | (value << 16); break;
|
|
case 3: value = (value >> 24) | (value << 8); break;
|
|
}
|
|
}
|
|
|
|
if(!did_read) {
|
|
registers_.exception<Registers::Exception::DataAbort>();
|
|
return;
|
|
}
|
|
|
|
if(transfer.destination() == 15) {
|
|
registers_.set_pc(value);
|
|
} else {
|
|
registers_.active[transfer.destination()] = value;
|
|
}
|
|
}
|
|
|
|
// If either postindexing or else with writeback, update base.
|
|
if constexpr (!flags.pre_index() || flags.write_back_address()) {
|
|
if(transfer.base() == 15) {
|
|
registers_.set_pc(offsetted_address);
|
|
} else {
|
|
registers_.active[transfer.base()] = offsetted_address;
|
|
}
|
|
}
|
|
}
|
|
template <Flags f> void perform(BlockDataTransfer transfer) {
|
|
constexpr BlockDataTransferFlags flags(f);
|
|
|
|
// TODO: inclusion of the base in the register list.
|
|
// TODO: data aborts.
|
|
|
|
uint32_t address = transfer.base() == 15 ?
|
|
registers_.pc_status(8) :
|
|
registers_.active[transfer.base()];
|
|
|
|
const uint16_t list = transfer.register_list();
|
|
|
|
// Writes are always from lowest address to highest; asking for storage downward
|
|
// just results in predecrementation of the address.
|
|
if constexpr (!flags.add_offset()) {
|
|
uint32_t total = ((list & 0xa) >> 1) + (list & 0x5);
|
|
total = ((list & 0xc) >> 2) + (list & 0x3);
|
|
address -= total * 4;
|
|
}
|
|
|
|
[[maybe_unused]] uint32_t final_address = address;
|
|
|
|
bool completed_all_visits = true;
|
|
const auto visit = [&](uint32_t &value) {
|
|
if constexpr (flags.pre_index() == flags.add_offset()) {
|
|
address += 4;
|
|
}
|
|
|
|
if constexpr (flags.operation() == BlockDataTransferFlags::Operation::STM) {
|
|
bus_.template read<uint32_t>(address, value, registers_.mode(), false);
|
|
} else {
|
|
completed_all_visits &= bus_.template write<uint32_t>(address, value, registers_.mode(), false);
|
|
}
|
|
|
|
if constexpr (!flags.pre_index() != flags.add_offset()) {
|
|
address += 4;
|
|
}
|
|
};
|
|
|
|
// Handle forcing transfer of the user bank.
|
|
Mode original_mode = registers_.mode();
|
|
const bool adopt_user_mode =
|
|
(
|
|
flags.operation() == BlockDataTransferFlags::Operation::STM &&
|
|
flags.load_psr()
|
|
) ||
|
|
(
|
|
flags.operation() == BlockDataTransferFlags::Operation::LDM &&
|
|
!(list & (1 << 15))
|
|
);
|
|
if(adopt_user_mode) {
|
|
registers_.set_mode(Mode::User);
|
|
}
|
|
|
|
for(int c = 0; c < 15; c++) {
|
|
if(list & (1 << c)) {
|
|
visit(registers_.active[c]);
|
|
}
|
|
}
|
|
|
|
if(list & (1 << 15)) {
|
|
uint32_t value;
|
|
if constexpr (flags.operation() == BlockDataTransferFlags::Operation::STM) {
|
|
value = registers_.pc_status(12);
|
|
visit(value);
|
|
} else {
|
|
visit(value);
|
|
registers_.set_pc(value);
|
|
if constexpr (flags.load_psr()) {
|
|
registers_.set_status(value);
|
|
}
|
|
}
|
|
}
|
|
|
|
if constexpr (flags.write_back_address()) {
|
|
if(transfer.base() != 15) {
|
|
if constexpr (flags.add_offset()) {
|
|
registers_.active[transfer.base()] = address;
|
|
} else {
|
|
registers_.active[transfer.base()] = final_address;
|
|
}
|
|
}
|
|
}
|
|
|
|
if(adopt_user_mode) {
|
|
registers_.set_mode(original_mode);
|
|
}
|
|
}
|
|
|
|
void software_interrupt() {
|
|
registers_.exception<Registers::Exception::SoftwareInterrupt>();
|
|
}
|
|
void unknown() {
|
|
registers_.exception<Registers::Exception::UndefinedInstruction>();
|
|
}
|
|
|
|
// Act as if no coprocessors present.
|
|
template <Flags> void perform(CoprocessorRegisterTransfer) {
|
|
registers_.exception<Registers::Exception::UndefinedInstruction>();
|
|
}
|
|
template <Flags> void perform(CoprocessorDataOperation) {
|
|
registers_.exception<Registers::Exception::UndefinedInstruction>();
|
|
}
|
|
template <Flags> void perform(CoprocessorDataTransfer) {
|
|
registers_.exception<Registers::Exception::UndefinedInstruction>();
|
|
}
|
|
|
|
MemoryT bus_;
|
|
|
|
private:
|
|
Registers registers_;
|
|
};
|
|
|
|
}
|
|
|
|
@interface ARMDecoderTests : XCTestCase
|
|
@end
|
|
|
|
@implementation ARMDecoderTests
|
|
|
|
- (void)testXYX {
|
|
Scheduler<Memory> scheduler;
|
|
|
|
for(int c = 0; c < 65536; c++) {
|
|
InstructionSet::ARM::dispatch(c << 16, scheduler);
|
|
}
|
|
InstructionSet::ARM::dispatch(0xEAE06900, scheduler);
|
|
}
|
|
|
|
@end
|