1
0
mirror of https://github.com/TomHarte/CLK.git synced 2024-12-12 08:30:05 +00:00
CLK/Components/8272/i8272.cpp
2024-11-29 22:43:54 -05:00

818 lines
26 KiB
C++

//
// i8272.cpp
// Clock Signal
//
// Created by Thomas Harte on 05/08/2017.
// Copyright 2017 Thomas Harte. All rights reserved.
//
#include "i8272.hpp"
#include "../../Outputs/Log.hpp"
namespace {
Log::Logger<Log::Source::i8272> logger;
}
using namespace Intel::i8272;
i8272::i8272(BusHandler &bus_handler, const Cycles clock_rate) :
Storage::Disk::MFMController(clock_rate),
bus_handler_(bus_handler) {
posit_event(int(Event8272::CommandByte));
// TODO: implement DMA, etc. I have a vague intention to implement the IBM PC
// one day, that should help to force that stuff.
(void)bus_handler_;
}
ClockingHint::Preference i8272::preferred_clocking() const {
const auto mfm_controller_preferred_clocking = Storage::Disk::MFMController::preferred_clocking();
if(mfm_controller_preferred_clocking != ClockingHint::Preference::None) return mfm_controller_preferred_clocking;
return is_sleeping_ ? ClockingHint::Preference::None : ClockingHint::Preference::JustInTime;
}
void i8272::run_for(const Cycles cycles) {
Storage::Disk::MFMController::run_for(cycles);
if(is_sleeping_) return;
// check for an expired timer
if(delay_time_ > 0) {
if(cycles.as_integral() >= delay_time_) {
delay_time_ = 0;
posit_event(int(Event8272::Timer));
} else {
delay_time_ -= cycles.as_integral();
}
}
// update seek status of any drives presently seeking
if(drives_seeking_) {
int drives_left = drives_seeking_;
for(int c = 0; c < 4; c++) {
if(drives_[c].phase == Drive::Seeking) {
drives_[c].step_rate_counter += cycles.as_integral();
auto steps = drives_[c].step_rate_counter / (8000 * step_rate_time_);
drives_[c].step_rate_counter %= (8000 * step_rate_time_);
while(steps--) {
// Perform a step.
int direction = (drives_[c].target_head_position < drives_[c].head_position) ? -1 : 1;
logger.info().append("Target %d versus believed %d", drives_[c].target_head_position, drives_[c].head_position);
select_drive(c);
get_drive().step(Storage::Disk::HeadPosition(direction));
if(drives_[c].target_head_position >= 0) drives_[c].head_position += direction;
// Check for completion.
if(seek_is_satisfied(c)) {
drives_[c].phase = Drive::CompletedSeeking;
drives_seeking_--;
break;
}
}
drives_left--;
if(!drives_left) break;
}
}
}
// check for any head unloads
if(head_timers_running_) {
int timers_left = head_timers_running_;
for(int c = 0; c < 8; c++) {
int drive = (c >> 1);
int head = c&1;
if(drives_[drive].head_unload_delay[head] > 0) {
if(cycles.as_integral() >= drives_[drive].head_unload_delay[head]) {
drives_[drive].head_unload_delay[head] = 0;
drives_[drive].head_is_loaded[head] = false;
head_timers_running_--;
} else {
drives_[drive].head_unload_delay[head] -= cycles.as_integral();
}
timers_left--;
if(!timers_left) break;
}
}
}
// check for busy plus ready disabled
if(is_executing_ && !get_drive().get_is_ready()) {
posit_event(int(Event8272::NoLongerReady));
}
is_sleeping_ = !delay_time_ && !drives_seeking_ && !head_timers_running_;
if(is_sleeping_) update_clocking_observer();
}
void i8272::write(const int address, const uint8_t value) {
// don't consider attempted sets to the status register
if(!address) return;
// if not ready for commands, do nothing
if(!status_.get(MainStatus::DataReady) || status_.get(MainStatus::DataIsToProcessor)) return;
if(expects_input_) {
input_ = value;
has_input_ = true;
status_.set(MainStatus::DataReady, false);
} else {
// accumulate latest byte in the command byte sequence
command_.push_back(value);
posit_event(int(Event8272::CommandByte));
}
}
uint8_t i8272::read(const int address) {
if(address) {
if(result_stack_.empty()) return 0xff;
uint8_t result = result_stack_.back();
result_stack_.pop_back();
if(result_stack_.empty()) posit_event(int(Event8272::ResultEmpty));
return result;
} else {
return status_.main();
}
}
#define BEGIN_SECTION() switch(resume_point_) { default:
#define END_SECTION() }
#define MS_TO_CYCLES(x) x * 8000
#define WAIT_FOR_EVENT(mask) resume_point_ = __LINE__; interesting_event_mask_ = int(mask); return; case __LINE__:
#define WAIT_FOR_TIME(ms) resume_point_ = __LINE__; interesting_event_mask_ = int(Event8272::Timer); delay_time_ = MS_TO_CYCLES(ms); is_sleeping_ = false; update_clocking_observer(); case __LINE__: if(delay_time_) return;
#define PASTE(x, y) x##y
#define CONCAT(x, y) PASTE(x, y)
#define FIND_HEADER() \
set_data_mode(DataMode::Scanning); \
CONCAT(find_header, __LINE__): WAIT_FOR_EVENT(int(Event::Token) | int(Event::IndexHole)); \
if(event_type == int(Event::IndexHole)) { index_hole_limit_--; } \
else if(get_latest_token().type == Token::ID) goto CONCAT(header_found, __LINE__); \
\
if(index_hole_limit_) goto CONCAT(find_header, __LINE__); \
CONCAT(header_found, __LINE__): (void)0;\
#define FIND_DATA() \
set_data_mode(DataMode::Scanning); \
CONCAT(find_data, __LINE__): WAIT_FOR_EVENT(int(Event::Token) | int(Event::IndexHole)); \
if(event_type == int(Event::Token)) { \
if(get_latest_token().type == Token::Byte || get_latest_token().type == Token::Sync) goto CONCAT(find_data, __LINE__); \
}
#define READ_HEADER() \
distance_into_section_ = 0; \
set_data_mode(DataMode::Reading); \
CONCAT(read_header, __LINE__): WAIT_FOR_EVENT(Event::Token); \
header_[distance_into_section_] = get_latest_token().byte_value; \
distance_into_section_++; \
if(distance_into_section_ < 6) goto CONCAT(read_header, __LINE__); \
#define SET_DRIVE_HEAD_MFM() \
active_drive_ = command_.target().drive; \
active_head_ = command_.target().head; \
select_drive(active_drive_); \
get_drive().set_head(active_head_); \
set_is_double_density(command_.target().mfm);
#define WAIT_FOR_BYTES(n) \
distance_into_section_ = 0; \
CONCAT(wait_bytes, __LINE__): WAIT_FOR_EVENT(Event::Token); \
if(get_latest_token().type == Token::Byte) distance_into_section_++; \
if(distance_into_section_ < (n)) goto CONCAT(wait_bytes, __LINE__);
#define LOAD_HEAD() \
if(!drives_[active_drive_].head_is_loaded[active_head_]) { \
drives_[active_drive_].head_is_loaded[active_head_] = true; \
WAIT_FOR_TIME(head_load_time_); \
} else { \
if(drives_[active_drive_].head_unload_delay[active_head_] > 0) { \
drives_[active_drive_].head_unload_delay[active_head_] = 0; \
head_timers_running_--; \
} \
}
#define SCHEDULE_HEAD_UNLOAD() \
if(drives_[active_drive_].head_is_loaded[active_head_]) {\
if(drives_[active_drive_].head_unload_delay[active_head_] == 0) { \
head_timers_running_++; \
is_sleeping_ = false; \
update_clocking_observer(); \
} \
drives_[active_drive_].head_unload_delay[active_head_] = MS_TO_CYCLES(head_unload_time_);\
}
void i8272::posit_event(const int event_type) {
if(event_type == int(Event::IndexHole)) index_hole_count_++;
if(event_type == int(Event8272::NoLongerReady)) {
status_.set(Status0::NotReady);
goto abort;
}
if(!(interesting_event_mask_ & event_type)) return;
interesting_event_mask_ &= ~event_type;
BEGIN_SECTION();
// Resets busy and non-DMA execution, clears the command buffer, sets the data mode to scanning and flows
// into wait_for_complete_command_sequence.
wait_for_command:
expects_input_ = false;
set_data_mode(Storage::Disk::MFMController::DataMode::Scanning);
status_.set(MainStatus::CommandInProgress, false);
status_.set(MainStatus::InNonDMAExecution, false);
command_.clear();
// Sets the data request bit, and waits for a byte. Then sets the busy bit. Continues accepting bytes
// until it has a quantity that make up an entire command, then resets the data request bit and
// branches to that command.
wait_for_complete_command_sequence:
status_.set(MainStatus::DataReady, true);
status_.set(MainStatus::DataIsToProcessor, false);
WAIT_FOR_EVENT(Event8272::CommandByte)
if(!command_.has_command()) {
goto wait_for_complete_command_sequence;
}
status_.begin(command_);
if(command_.has_geometry()) {
cylinder_ = command_.geometry().cylinder;
head_ = command_.geometry().head;
sector_ = command_.geometry().sector;
size_ = command_.geometry().size;
}
// If this is not clearly a command that's safe to carry out in parallel to a seek, end all seeks.
is_access_command_ = command_.is_access();
if(is_access_command_) {
for(int c = 0; c < 4; c++) {
if(drives_[c].phase == Drive::Seeking) {
drives_[c].phase = Drive::NotSeeking;
drives_seeking_--;
}
}
// Establishes the drive and head being addressed, and whether in double density mode; populates the internal
// cylinder, head, sector and size registers from the command stream.
is_executing_ = true;
if(!dma_mode_) {
status_.set(MainStatus::InNonDMAExecution, true);
}
SET_DRIVE_HEAD_MFM();
LOAD_HEAD();
if(!get_drive().get_is_ready()) {
status_.set(Status0::NotReady);
goto abort;
}
}
// Jump to the proper place.
switch(command_.command()) {
case Command::ReadData:
case Command::ReadDeletedData:
goto read_data;
case Command::WriteData:
case Command::WriteDeletedData:
goto write_data;
case Command::ReadTrack: goto read_track;
case Command::ReadID: goto read_id;
case Command::FormatTrack: goto format_track;
case Command::ScanLow: goto scan_low;
case Command::ScanLowOrEqual: goto scan_low_or_equal;
case Command::ScanHighOrEqual: goto scan_high_or_equal;
case Command::Recalibrate: goto recalibrate;
case Command::Seek: goto seek;
case Command::SenseInterruptStatus: goto sense_interrupt_status;
case Command::Specify: goto specify;
case Command::SenseDriveStatus: goto sense_drive_status;
default: goto invalid;
}
// Decodes drive, head and density, loads the head, loads the internal cylinder, head, sector and size registers,
// and searches for a sector that meets those criteria. If one is found, inspects the instruction in use and
// jumps to an appropriate handler.
read_write_find_header:
// Sets a maximum index hole limit of 2 then performs a find header/read header loop, continuing either until
// the index hole limit is breached or a sector is found with a cylinder, head, sector and size equal to the
// values in the internal registers.
index_hole_limit_ = 2;
// logger.info().append("Seeking " << PADDEC(0) << cylinder_ << " " << head_ " " << sector_ << " " << size_);
find_next_sector:
FIND_HEADER();
if(!index_hole_limit_) {
// Two index holes have passed wihout finding the header sought.
// logger.info().append("Not found");
status_.set(Status1::NoData);
goto abort;
}
index_hole_count_ = 0;
// logger.info().append("Header");
READ_HEADER();
if(index_hole_count_) {
// This implies an index hole was sighted within the header. Error out.
status_.set(Status1::EndOfCylinder);
goto abort;
}
if(get_crc_generator().get_value()) {
// This implies a CRC error in the header; mark as such but continue.
status_.set(Status1::DataError);
}
// logger.info().append("Considering %02x %02x %02x %02x [%04x]", header_[0], header_[1], header_[2], header_[3], get_crc_generator().get_value());
if(header_[0] != cylinder_ || header_[1] != head_ || header_[2] != sector_ || header_[3] != size_) goto find_next_sector;
// Branch to whatever is supposed to happen next
// logger.info().append("Proceeding");
switch(command_.command()) {
default:
case Command::ReadData:
case Command::ReadDeletedData:
goto read_data_found_header;
case Command::WriteData: // write data
case Command::WriteDeletedData: // write deleted data
goto write_data_found_header;
}
// Performs the read data or read deleted data command.
read_data:
// logger.info().append("Read [deleted] data [%02x %02x %02x %02x ... %02x %02x]",
// command_[2],
// command_[3],
// command_[4],
// command_[5],
// command_[6],
// command_[8]);
read_next_data:
goto read_write_find_header;
// Finds the next data block and sets data mode to reading, setting an error flag if the on-disk deleted
// flag doesn't match the sort the command was looking for.
read_data_found_header:
FIND_DATA();
// TODO: should Status2::DeletedControlMark be cleared?
if(event_type == int(Event::Token)) {
if(get_latest_token().type != Token::Data && get_latest_token().type != Token::DeletedData) {
// Something other than a data mark came next, impliedly an ID or index mark.
status_.set(Status1::MissingAddressMark);
status_.set(Status2::MissingDataAddressMark);
goto abort; // TODO: or read_next_data?
} else {
if((get_latest_token().type == Token::Data) != (command_.command() == Command::ReadData)) {
if(!command_.target().skip_deleted) {
// SK is not set; set the error flag but read this sector before finishing.
status_.set(Status2::DeletedControlMark);
} else {
// SK is set; skip this sector.
goto read_next_data;
}
}
}
} else {
// An index hole appeared before the data mark.
status_.set(Status1::EndOfCylinder);
goto abort; // TODO: or read_next_data?
}
distance_into_section_ = 0;
set_data_mode(Reading);
// Waits for the next token, then supplies it to the CPU by: (i) setting data request and direction; and (ii) resetting
// data request once the byte has been taken. Continues until all bytes have been read.
//
// TODO: consider DTL.
read_data_get_byte:
WAIT_FOR_EVENT(int(Event::Token) | int(Event::IndexHole));
if(event_type == int(Event::Token)) {
result_stack_.push_back(get_latest_token().byte_value);
distance_into_section_++;
status_.set(MainStatus::DataReady, true);
status_.set(MainStatus::DataIsToProcessor, true);
WAIT_FOR_EVENT(int(Event8272::ResultEmpty) | int(Event::Token) | int(Event::IndexHole));
}
switch(event_type) {
case int(Event8272::ResultEmpty): // The caller read the byte in time; proceed as normal.
status_.set(MainStatus::DataReady, false);
if(distance_into_section_ < (128 << size_)) goto read_data_get_byte;
break;
case int(Event::Token): // The caller hasn't read the old byte yet and a new one has arrived
status_.set(Status1::OverRun);
goto abort;
break;
case int(Event::IndexHole):
status_.set(Status1::EndOfCylinder);
goto abort;
break;
}
// read CRC, without transferring it, then check it
WAIT_FOR_EVENT(Event::Token);
WAIT_FOR_EVENT(Event::Token);
if(get_crc_generator().get_value()) {
// This implies a CRC error in the sector; mark as such and temrinate.
status_.set(Status1::DataError);
status_.set(Status2::DataCRCError);
goto abort;
}
// check whether that's it: either the final requested sector has been read, or because
// a sector that was [/wasn't] marked as deleted when it shouldn't [/should] have been
if(sector_ != command_.geometry().end_of_track && !status_.get(Status2::DeletedControlMark)) {
sector_++;
goto read_next_data;
}
// For a final result phase, post the standard ST0, ST1, ST2, C, H, R, N
goto post_st012chrn;
write_data:
// logger.info().append("Write [deleted] data [%02x %02x %02x %02x ... %02x %02x]",
// command_[2],
// command_[3],
// command_[4],
// command_[5],
// command_[6],
// command_[8]);
if(get_drive().get_is_read_only()) {
status_.set(Status1::NotWriteable);
goto abort;
}
write_next_data:
goto read_write_find_header;
write_data_found_header:
WAIT_FOR_BYTES(get_is_double_density() ? 22 : 11);
begin_writing(true);
write_id_data_joiner(command_.command() == Command::WriteDeletedData, true);
status_.set(MainStatus::DataIsToProcessor, false);
status_.set(MainStatus::DataReady, true);
expects_input_ = true;
distance_into_section_ = 0;
write_loop:
WAIT_FOR_EVENT(Event::DataWritten);
if(!has_input_) {
status_.set(Status1::OverRun);
goto abort;
}
write_byte(input_);
has_input_ = false;
distance_into_section_++;
if(distance_into_section_ < (128 << size_)) {
status_.set(MainStatus::DataReady, true);
goto write_loop;
}
logger.info().append("Wrote %d bytes", distance_into_section_);
write_crc();
expects_input_ = false;
WAIT_FOR_EVENT(Event::DataWritten);
end_writing();
if(sector_ != command_.geometry().end_of_track) {
sector_++;
goto write_next_data;
}
goto post_st012chrn;
// Performs the read ID command.
read_id:
// Establishes the drive and head being addressed, and whether in double density mode.
// logger.info().append("Read ID [%02x %02x]", command_[0], command_[1]);
// Sets a maximum index hole limit of 2 then waits either until it finds a header mark or sees too many index holes.
// If a header mark is found, reads in the following bytes that produce a header. Otherwise branches to data not found.
index_hole_limit_ = 2;
FIND_HEADER();
if(!index_hole_limit_) {
status_.set(Status1::MissingAddressMark);
goto abort;
}
READ_HEADER();
// Sets internal registers from the discovered header and posts the standard ST0, ST1, ST2, C, H, R, N.
cylinder_ = header_[0];
head_ = header_[1];
sector_ = header_[2];
size_ = header_[3];
goto post_st012chrn;
// Performs read track.
read_track:
// logger.info().append("Read track [%02x %02x %02x %02x]"
// command_[2],
// command_[3],
// command_[4],
// command_[5]);
// Wait for the index hole.
WAIT_FOR_EVENT(Event::IndexHole);
sector_ = 0;
index_hole_limit_ = 2;
// While not index hole again, stream all sector contents until EOT sectors have been read.
read_track_next_sector:
FIND_HEADER();
if(!index_hole_limit_) {
if(!sector_) {
status_.set(Status1::MissingAddressMark);
goto abort;
} else {
goto post_st012chrn;
}
}
READ_HEADER();
FIND_DATA();
distance_into_section_ = 0;
status_.set(MainStatus::DataIsToProcessor, true);
read_track_get_byte:
WAIT_FOR_EVENT(Event::Token);
result_stack_.push_back(get_latest_token().byte_value);
distance_into_section_++;
status_.set(MainStatus::DataReady, true);
// TODO: other possible exit conditions; find a way to merge with the read_data version of this.
WAIT_FOR_EVENT(int(Event8272::ResultEmpty));
status_.set(MainStatus::DataReady, false);
if(distance_into_section_ < (128 << header_[2])) goto read_track_get_byte;
sector_++;
if(sector_ < command_.geometry().end_of_track) goto read_track_next_sector;
goto post_st012chrn;
// Performs format [/write] track.
format_track:
logger.info().append("Format track");
if(get_drive().get_is_read_only()) {
status_.set(Status1::NotWriteable);
goto abort;
}
// Wait for the index hole.
WAIT_FOR_EVENT(Event::IndexHole);
index_hole_count_ = 0;
begin_writing(true);
// Write start-of-track.
write_start_of_track();
WAIT_FOR_EVENT(Event::DataWritten);
sector_ = 0;
format_track_write_sector:
write_id_joiner();
// Write the sector header, obtaining its contents
// from the processor.
status_.set(MainStatus::DataIsToProcessor, false);
status_.set(MainStatus::DataReady, true);
expects_input_ = true;
distance_into_section_ = 0;
format_track_write_header:
WAIT_FOR_EVENT(int(Event::DataWritten) | int(Event::IndexHole));
switch(event_type) {
case int(Event::IndexHole):
status_.set(Status1::OverRun);
goto abort;
break;
case int(Event::DataWritten):
header_[distance_into_section_] = input_;
write_byte(input_);
has_input_ = false;
distance_into_section_++;
if(distance_into_section_ < 4) {
status_.set(MainStatus::DataReady, true);
goto format_track_write_header;
}
break;
}
logger.info().append("W: %02x %02x %02x %02x, %04x",
header_[0], header_[1], header_[2], header_[3], get_crc_generator().get_value());
write_crc();
// Write the sector body.
write_id_data_joiner(false, false);
write_n_bytes(128 << command_.format_specs().bytes_per_sector, command_.format_specs().filler);
write_crc();
// Write the prescribed gap.
write_n_bytes(command_.format_specs().gap3_length, get_is_double_density() ? 0x4e : 0xff);
// Consider repeating.
sector_++;
if(sector_ < command_.format_specs().sectors_per_track && !index_hole_count_)
goto format_track_write_sector;
// Otherwise, pad out to the index hole.
format_track_pad:
write_byte(get_is_double_density() ? 0x4e : 0xff);
WAIT_FOR_EVENT(int(Event::DataWritten) | int(Event::IndexHole));
if(event_type != int(Event::IndexHole)) goto format_track_pad;
end_writing();
cylinder_ = header_[0];
head_ = header_[1];
sector_ = header_[2] + 1;
size_ = header_[3];
goto post_st012chrn;
scan_low:
logger.error().append("Scan low unimplemented!!");
goto wait_for_command;
scan_low_or_equal:
logger.error().append("Scan low or equal unimplemented!!");
goto wait_for_command;
scan_high_or_equal:
logger.error().append("Scan high or equal unimplemented!!");
goto wait_for_command;
// Performs both recalibrate and seek commands. These commands occur asynchronously, so the actual work
// occurs in ::run_for; this merely establishes that seeking should be ongoing.
recalibrate:
seek:
{
const int drive = command_.target().drive;
select_drive(drive);
// Increment the seeking count if this drive wasn't already seeking.
if(drives_[drive].phase != Drive::Seeking) {
drives_seeking_++;
is_sleeping_ = false;
update_clocking_observer();
}
// Set currently seeking, with a step to occur right now (yes, it sounds like jamming these
// in could damage your drive motor).
drives_[drive].phase = Drive::Seeking;
drives_[drive].step_rate_counter = 8000 * step_rate_time_;
drives_[drive].steps_taken = 0;
drives_[drive].seek_failed = false;
status_.start_seek(command_.target().drive);
// If this is a seek, set the processor-supplied target location; otherwise it is a recalibrate,
// which means resetting the current state now but aiming to hit '-1' (which the stepping code
// up in run_for understands to mean 'keep going until track 0 is active').
if(command_.command() != Command::Recalibrate) {
drives_[drive].target_head_position = command_.seek_target();
logger.info().append("Seek to %d", command_.seek_target());
} else {
drives_[drive].target_head_position = -1;
drives_[drive].head_position = 0;
logger.info().append("Recalibrate");
}
// Check whether any steps are even needed; if not then mark as completed already.
if(seek_is_satisfied(drive)) {
drives_[drive].phase = Drive::CompletedSeeking;
drives_seeking_--;
}
}
goto wait_for_command;
// Performs sense interrupt status.
sense_interrupt_status:
logger.info().append("Sense interrupt status");
{
// Find the first drive that is in the CompletedSeeking state.
int found_drive = -1;
for(int c = 0; c < 4; c++) {
if(drives_[c].phase == Drive::CompletedSeeking) {
found_drive = c;
break;
}
}
// If a drive was found, return its results. Otherwise return a single 0x80.
if(found_drive != -1) {
drives_[found_drive].phase = Drive::NotSeeking;
status_.set_status0(uint8_t(found_drive | uint8_t(Status0::SeekEnded)));
// status_.end_sense_interrupt_status(found_drive, 0);
// status_.set(Status0::SeekEnded);
result_stack_ = { drives_[found_drive].head_position, status_[0]};
} else {
result_stack_ = { 0x80 };
}
}
goto post_result;
// Performs specify.
specify:
// Just store the values, and terminate the command.
logger.info().append("Specify");
step_rate_time_ = command_.specify_specs().step_rate_time;
head_unload_time_ = command_.specify_specs().head_unload_time;
head_load_time_ = command_.specify_specs().head_load_time;
if(!head_unload_time_) head_unload_time_ = 16;
if(!head_load_time_) head_load_time_ = 2;
dma_mode_ = command_.specify_specs().use_dma;
goto wait_for_command;
sense_drive_status:
logger.info().append("Sense drive status");
{
int drive = command_.target().drive;
select_drive(drive);
result_stack_ = {
uint8_t(
(command_.drive_head()) | // drive and head number
0x08 | // single sided
(get_drive().get_is_track_zero() ? 0x10 : 0x00) |
(get_drive().get_is_ready() ? 0x20 : 0x00) |
(get_drive().get_is_read_only() ? 0x40 : 0x00)
)
};
}
goto post_result;
// Performs any invalid command.
invalid:
// A no-op, but posts ST0 (but which ST0?)
result_stack_ = {0x80};
goto post_result;
// Sets abnormal termination of the current command and proceeds to an ST0, ST1, ST2, C, H, R, N result phase.
abort:
end_writing();
status_.set(Status0::AbnormalTermination);
goto post_st012chrn;
// Posts ST0, ST1, ST2, C, H, R and N as a result phase.
post_st012chrn:
SCHEDULE_HEAD_UNLOAD();
result_stack_ = {size_, sector_, head_, cylinder_, status_[2], status_[1], status_[0]};
goto post_result;
// Posts whatever is in result_stack_ as a result phase. Be aware that it is a stack, so the
// last thing in it will be returned first.
post_result:
// {
// auto line = logger.info();
// line.append("Result to %02x, main %02x", command_[0] & 0x1f, main_status_);
// for(std::size_t c = 0; c < result_stack_.size(); c++) {
// line.append(" %02x", result_stack_[result_stack_.size() - 1 - c]);
// }
// }
// Set ready to send data to the processor, no longer in non-DMA execution phase.
is_executing_ = false;
status_.set(MainStatus::InNonDMAExecution, false);
status_.set(MainStatus::DataReady, true);
status_.set(MainStatus::DataIsToProcessor, true);
// The actual stuff of unwinding result_stack_ is handled by ::read; wait
// until the processor has read all result bytes.
WAIT_FOR_EVENT(Event8272::ResultEmpty);
// Reset data direction and end the command.
goto wait_for_command;
END_SECTION()
}
bool i8272::seek_is_satisfied(int drive) {
return (drives_[drive].target_head_position == drives_[drive].head_position) ||
(drives_[drive].target_head_position == -1 && get_drive().get_is_track_zero());
}
void i8272::set_dma_acknowledge(bool) {
}
void i8272::set_terminal_count(bool) {
}
void i8272::set_data_input(uint8_t) {
}
uint8_t i8272::get_data_output() {
return 0xff;
}