1
0
mirror of https://github.com/TomHarte/CLK.git synced 2024-11-30 04:50:08 +00:00
CLK/InstructionSets/x86/DataPointerResolver.hpp
2022-03-09 20:20:32 -05:00

321 lines
9.7 KiB
C++

//
// DataPointerResolver.hpp
// Clock Signal
//
// Created by Thomas Harte on 24/02/2022.
// Copyright © 2022 Thomas Harte. All rights reserved.
//
#ifndef DataPointerResolver_hpp
#define DataPointerResolver_hpp
#include "Instruction.hpp"
#include "Model.hpp"
#include <cassert>
namespace InstructionSet {
namespace x86 {
/// Unlike source, describes only registers, and breaks
/// them down by conventional name — so AL, AH, AX and EAX are all
/// listed separately and uniquely, rather than being eAX+size or
/// eSPorAH with a size of 1.
enum class Register: uint8_t {
// 8-bit registers.
AL, AH,
CL, CH,
DL, DH,
BL, BH,
// 16-bit registers.
AX, CX, DX, BX,
SP, BP, SI, DI,
ES, CS, SS, DS,
FS, GS,
// 32-bit registers.
EAX, ECX, EDX, EBX,
ESP, EBP, ESI, EDI,
//
None
};
/// @returns @c true if @c r is the same size as @c DataT; @c false otherwise.
/// @discussion Provided primarily to aid in asserts; if the decoder and resolver are both
/// working then it shouldn't be necessary to test this in register files.
template <typename DataT> constexpr bool is_sized(Register r) {
static_assert(sizeof(DataT) == 4 || sizeof(DataT) == 2 || sizeof(DataT) == 1);
if constexpr (sizeof(DataT) == 4) {
return r >= Register::EAX && r < Register::None;
}
if constexpr (sizeof(DataT) == 2) {
return r >= Register::AX && r < Register::EAX;
}
if constexpr (sizeof(DataT) == 1) {
return r >= Register::AL && r < Register::AX;
}
return false;
}
/// @returns the proper @c Register given @c source and data of size @c sizeof(DataT),
/// or Register::None if no such register exists (e.g. asking for a 32-bit version of CS).
template <typename DataT> constexpr Register register_for_source(Source source) {
static_assert(sizeof(DataT) == 4 || sizeof(DataT) == 2 || sizeof(DataT) == 1);
if constexpr (sizeof(DataT) == 4) {
switch(source) {
case Source::eAX: return Register::EAX;
case Source::eCX: return Register::ECX;
case Source::eDX: return Register::EDX;
case Source::eBX: return Register::EBX;
case Source::eSPorAH: return Register::ESP;
case Source::eBPorCH: return Register::EBP;
case Source::eSIorDH: return Register::ESI;
case Source::eDIorBH: return Register::EDI;
default: break;
}
}
if constexpr (sizeof(DataT) == 2) {
switch(source) {
case Source::eAX: return Register::AX;
case Source::eCX: return Register::CX;
case Source::eDX: return Register::DX;
case Source::eBX: return Register::BX;
case Source::eSPorAH: return Register::SP;
case Source::eBPorCH: return Register::BP;
case Source::eSIorDH: return Register::SI;
case Source::eDIorBH: return Register::DI;
case Source::ES: return Register::ES;
case Source::CS: return Register::CS;
case Source::SS: return Register::SS;
case Source::DS: return Register::DS;
case Source::FS: return Register::FS;
case Source::GS: return Register::GS;
default: break;
}
}
if constexpr (sizeof(DataT) == 1) {
switch(source) {
case Source::eAX: return Register::AL;
case Source::eCX: return Register::CL;
case Source::eDX: return Register::DL;
case Source::eBX: return Register::BL;
case Source::eSPorAH: return Register::AH;
case Source::eBPorCH: return Register::CH;
case Source::eSIorDH: return Register::DH;
case Source::eDIorBH: return Register::BH;
default: break;
}
}
return Register::None;
}
/// Reads from or writes to the source or target identified by a DataPointer, relying upon two user-supplied classes:
///
/// * a register bank; and
/// * a memory pool.
///
/// The register bank should implement `template<typename DataT, Register> DataT read()` and `template<typename DataT, Register> void write(DataT)`.
/// Those functions will be called only with registers and data types that are appropriate to the @c model.
///
/// The memory pool should implement `template<typename DataT> DataT read(Source segment, uint32_t address)` and
/// `template<typename DataT> void write(Source segment, uint32_t address, DataT value)`.
template <Model model, typename RegistersT, typename MemoryT> class DataPointerResolver {
public:
public:
/// Reads the data pointed to by @c pointer, referencing @c instruction, @c memory and @c registers as necessary.
template <typename DataT> static DataT read(
RegistersT &registers,
MemoryT &memory,
const Instruction<is_32bit(model)> &instruction,
DataPointer pointer);
/// Writes @c value to the data pointed to by @c pointer, referencing @c instruction, @c memory and @c registers as necessary.
template <typename DataT> static void write(
RegistersT &registers,
MemoryT &memory,
const Instruction<is_32bit(model)> &instruction,
DataPointer pointer,
DataT value);
/// Computes the effective address of @c pointer including any displacement applied by @c instruction.
/// @c pointer must be of type Source::Indirect.
template <bool obscured_indirectNoBase = true, bool has_base = true>
static uint32_t effective_address(
RegistersT &registers,
const Instruction<is_32bit(model)> &instruction,
DataPointer pointer);
private:
template <bool is_write, typename DataT> static void access(
RegistersT &registers,
MemoryT &memory,
const Instruction<is_32bit(model)> &instruction,
DataPointer pointer,
DataT &value);
};
//
// Implementation begins here.
//
template <Model model, typename RegistersT, typename MemoryT>
template <typename DataT> DataT DataPointerResolver<model, RegistersT, MemoryT>::read(
RegistersT &registers,
MemoryT &memory,
const Instruction<is_32bit(model)> &instruction,
DataPointer pointer) {
DataT result;
access<false>(registers, memory, instruction, pointer, result);
return result;
}
template <Model model, typename RegistersT, typename MemoryT>
template <typename DataT> void DataPointerResolver<model, RegistersT, MemoryT>::write(
RegistersT &registers,
MemoryT &memory,
const Instruction<is_32bit(model)> &instruction,
DataPointer pointer,
DataT value) {
access<true>(registers, memory, instruction, pointer, value);
}
#define rw(v, r, is_write) \
case Source::r: \
using VType = typename std::remove_reference<decltype(v)>::type; \
if constexpr (is_write) { \
registers.template write<VType, register_for_source<VType>(Source::r)>(v); \
} else { \
v = registers.template read<VType, register_for_source<VType>(Source::r)>(); \
} \
break;
#define ALLREGS(v, i) rw(v, eAX, i); rw(v, eCX, i); \
rw(v, eDX, i); rw(v, eBX, i); \
rw(v, eSPorAH, i); rw(v, eBPorCH, i); \
rw(v, eSIorDH, i); rw(v, eDIorBH, i); \
rw(v, ES, i); rw(v, CS, i); \
rw(v, SS, i); rw(v, DS, i); \
rw(v, FS, i); rw(v, GS, i);
template <Model model, typename RegistersT, typename MemoryT>
template <bool obscured_indirectNoBase, bool has_base>
uint32_t DataPointerResolver<model, RegistersT, MemoryT>::effective_address(
RegistersT &registers,
const Instruction<is_32bit(model)> &instruction,
DataPointer pointer) {
using AddressT = typename Instruction<is_32bit(model)>::AddressT;
AddressT base = 0, index = 0;
if constexpr (has_base) {
switch(pointer.base<obscured_indirectNoBase>()) {
default: break;
ALLREGS(base, false);
}
}
switch(pointer.index()) {
default: break;
ALLREGS(index, false);
}
uint32_t address = index;
if constexpr (model >= Model::i80386) {
address <<= pointer.scale();
} else {
assert(!pointer.scale());
}
// Always compute address as 32-bit.
// TODO: verify use of memory_mask around here.
// Also I think possibly an exception is supposed to be generated
// if the programmer is in 32-bit mode and has asked for 16-bit
// address computation but generated e.g. a 17-bit result. Look into
// that when working on execution. For now the goal is merely decoding
// and this code exists both to verify the presence of all necessary
// fields and to help to explore the best breakdown of storage
// within Instruction.
constexpr uint32_t memory_masks[] = {0x0000'ffff, 0xffff'ffff};
const uint32_t memory_mask = memory_masks[int(instruction.address_size())];
address = (address & memory_mask) + (base & memory_mask) + instruction.displacement();
return address;
}
template <Model model, typename RegistersT, typename MemoryT>
template <bool is_write, typename DataT> void DataPointerResolver<model, RegistersT, MemoryT>::access(
RegistersT &registers,
MemoryT &memory,
const Instruction<is_32bit(model)> &instruction,
DataPointer pointer,
DataT &value) {
const Source source = pointer.source<false>();
switch(source) {
default:
if constexpr (!is_write) {
value = 0;
}
return;
ALLREGS(value, is_write);
case Source::DirectAddress:
if constexpr(is_write) {
memory.template write(instruction.data_segment(), instruction.displacement(), value);
} else {
value = memory.template read<DataT>(instruction.data_segment(), instruction.displacement());
}
break;
case Source::Immediate:
value = DataT(instruction.operand());
break;
#define indirect(has_base) { \
const auto address = effective_address<false, has_base> \
(registers, instruction, pointer); \
\
if constexpr (is_write) { \
memory.template write( \
instruction.data_segment(), \
address, \
value \
); \
} else { \
value = memory.template read<DataT>( \
instruction.data_segment(), \
address \
); \
} \
}
case Source::IndirectNoBase:
indirect(false);
break;
case Source::Indirect:
indirect(true);
break;
#undef indirect
}
}
#undef ALLREGS
#undef rw
}
}
#endif /* DataPointerResolver_hpp */