mirror of
https://github.com/TomHarte/CLK.git
synced 2025-01-12 00:30:31 +00:00
138 lines
4.3 KiB
C++
138 lines
4.3 KiB
C++
//
|
||
// LinearFilter.c
|
||
// Clock Signal
|
||
//
|
||
// Created by Thomas Harte on 01/10/2011.
|
||
// Copyright 2011 Thomas Harte. All rights reserved.
|
||
//
|
||
|
||
#include "FIRFilter.hpp"
|
||
#include <math.h>
|
||
|
||
using namespace SignalProcessing;
|
||
|
||
/*
|
||
|
||
A Kaiser-Bessel filter is a real time window filter. It looks at the last n samples
|
||
of an incoming data source and computes a filtered value, which is the value you'd
|
||
get after applying the specified filter, at the centre of the sampling window.
|
||
|
||
Hence, if you request a 37 tap filter then filtering introduces a latency of 18
|
||
samples. Suppose you're receiving input at 44,100Hz and using 4097 taps, then you'll
|
||
introduce a latency of 2048 samples, which is about 46ms.
|
||
|
||
There's a correlation between the number of taps and the quality of the filtering.
|
||
More samples = better filtering, at the cost of greater latency. Internally, applying
|
||
the filter involves calculating a weighted sum of previous values, so increasing the
|
||
number of taps is quite cheap in processing terms.
|
||
|
||
Original source for this filter:
|
||
|
||
"DIGITAL SIGNAL PROCESSING, II", IEEE Press, pages 123–126.
|
||
*/
|
||
|
||
/*! Evaluates the 0th order Bessel function at @c a. */
|
||
float FIRFilter::ino(float a) {
|
||
float d = 0.0f;
|
||
float ds = 1.0f;
|
||
float s = 1.0f;
|
||
|
||
do {
|
||
d += 2.0f;
|
||
ds *= (a * a) / (d * d);
|
||
s += ds;
|
||
} while(ds > s*1e-6f);
|
||
|
||
return s;
|
||
}
|
||
|
||
void FIRFilter::coefficients_for_idealised_filter_response(short *filterCoefficients, float *A, float attenuation, unsigned int numberOfTaps) {
|
||
/* calculate alpha, which is the Kaiser-Bessel window shape factor */
|
||
float a; // to take the place of alpha in the normal derivation
|
||
|
||
if(attenuation < 21.0f) {
|
||
a = 0.0f;
|
||
} else {
|
||
if(attenuation > 50.0f)
|
||
a = 0.1102f * (attenuation - 8.7f);
|
||
else
|
||
a = 0.5842f * powf(attenuation - 21.0f, 0.4f) + 0.7886f * (attenuation - 21.0f);
|
||
}
|
||
|
||
float *filterCoefficientsFloat = new float[numberOfTaps];
|
||
|
||
/* work out the right hand side of the filter coefficients */
|
||
unsigned int Np = (numberOfTaps - 1) / 2;
|
||
float I0 = ino(a);
|
||
float NpSquared = static_cast<float>(Np * Np);
|
||
for(unsigned int i = 0; i <= Np; i++) {
|
||
filterCoefficientsFloat[Np + i] =
|
||
A[i] *
|
||
ino(a * sqrtf(1.0f - (static_cast<float>(i * i) / NpSquared) )) /
|
||
I0;
|
||
}
|
||
|
||
/* coefficients are symmetrical, so copy from right hand side to left side */
|
||
for(unsigned int i = 0; i < Np; i++) {
|
||
filterCoefficientsFloat[i] = filterCoefficientsFloat[numberOfTaps - 1 - i];
|
||
}
|
||
|
||
/* scale back up so that we retain 100% of input volume */
|
||
float coefficientTotal = 0.0f;
|
||
for(unsigned int i = 0; i < numberOfTaps; i++) {
|
||
coefficientTotal += filterCoefficientsFloat[i];
|
||
}
|
||
|
||
/* we'll also need integer versions, potentially */
|
||
float coefficientMultiplier = 1.0f / coefficientTotal;
|
||
for(unsigned int i = 0; i < numberOfTaps; i++) {
|
||
filterCoefficients[i] = (short)(filterCoefficientsFloat[i] * kCSKaiserBesselFilterFixedMultiplier * coefficientMultiplier);
|
||
}
|
||
|
||
delete[] filterCoefficientsFloat;
|
||
}
|
||
|
||
void FIRFilter::get_coefficients(float *coefficients) {
|
||
for(unsigned int i = 0; i < number_of_taps_; i++) {
|
||
coefficients[i] = static_cast<float>(filter_coefficients_[i]) / kCSKaiserBesselFilterFixedMultiplier;
|
||
}
|
||
}
|
||
|
||
FIRFilter::FIRFilter(unsigned int number_of_taps, float input_sample_rate, float low_frequency, float high_frequency, float attenuation) {
|
||
// we must be asked to filter based on an odd number of
|
||
// taps, and at least three
|
||
if(number_of_taps < 3) number_of_taps = 3;
|
||
if(attenuation < 21.0f) attenuation = 21.0f;
|
||
|
||
// ensure we have an odd number of taps
|
||
number_of_taps |= 1;
|
||
|
||
// store instance variables
|
||
number_of_taps_ = number_of_taps;
|
||
filter_coefficients_ = new short[number_of_taps_];
|
||
|
||
/* calculate idealised filter response */
|
||
unsigned int Np = (number_of_taps - 1) / 2;
|
||
float twoOverSampleRate = 2.0f / input_sample_rate;
|
||
|
||
float *A = new float[Np+1];
|
||
A[0] = 2.0f * (high_frequency - low_frequency) / input_sample_rate;
|
||
for(unsigned int i = 1; i <= Np; i++) {
|
||
float iPi = static_cast<float>(i) * static_cast<float>(M_PI);
|
||
A[i] =
|
||
(
|
||
sinf(twoOverSampleRate * iPi * high_frequency) -
|
||
sinf(twoOverSampleRate * iPi * low_frequency)
|
||
) / iPi;
|
||
}
|
||
|
||
FIRFilter::coefficients_for_idealised_filter_response(filter_coefficients_, A, attenuation, number_of_taps_);
|
||
|
||
/* clean up */
|
||
delete[] A;
|
||
}
|
||
|
||
FIRFilter::~FIRFilter() {
|
||
delete[] filter_coefficients_;
|
||
}
|