1
0
mirror of https://github.com/TomHarte/CLK.git synced 2024-11-23 03:32:32 +00:00
CLK/Components/9918/Implementation/9918Base.hpp
2023-04-26 22:49:46 -04:00

629 lines
21 KiB
C++

//
// 9918Base.hpp
// Clock Signal
//
// Created by Thomas Harte on 14/12/2017.
// Copyright 2017 Thomas Harte. All rights reserved.
//
#ifndef TMS9918Base_hpp
#define TMS9918Base_hpp
#include "ClockConverter.hpp"
#include "../../../ClockReceiver/ClockReceiver.hpp"
#include "../../../Numeric/BitReverse.hpp"
#include "../../../Outputs/CRT/CRT.hpp"
#include "AccessEnums.hpp"
#include "LineBuffer.hpp"
#include "PersonalityTraits.hpp"
#include "Storage.hpp"
#include "YamahaCommands.hpp"
#include <array>
#include <cassert>
#include <cstdint>
#include <cstring>
#include <memory>
#include <vector>
namespace TI::TMS {
constexpr uint8_t StatusInterrupt = 0x80;
constexpr uint8_t StatusSpriteOverflow = 0x40;
constexpr int StatusSpriteCollisionShift = 5;
constexpr uint8_t StatusSpriteCollision = 0x20;
template <Personality personality> struct Base: public Storage<personality> {
Base();
static constexpr int output_lag = 11; // i.e. pixel output will occur 11 cycles
// after corresponding data read.
static constexpr uint32_t palette_pack(uint8_t r, uint8_t g, uint8_t b) {
#if TARGET_RT_BIG_ENDIAN
return uint32_t((r << 24) | (g << 16) | (b << 8));
#else
return uint32_t((b << 16) | (g << 8) | r);
#endif
}
// The default TMS palette.
static constexpr std::array<uint32_t, 16> default_palette {
palette_pack(0, 0, 0),
palette_pack(0, 0, 0),
palette_pack(33, 200, 66),
palette_pack(94, 220, 120),
palette_pack(84, 85, 237),
palette_pack(125, 118, 252),
palette_pack(212, 82, 77),
palette_pack(66, 235, 245),
palette_pack(252, 85, 84),
palette_pack(255, 121, 120),
palette_pack(212, 193, 84),
palette_pack(230, 206, 128),
palette_pack(33, 176, 59),
palette_pack(201, 91, 186),
palette_pack(204, 204, 204),
palette_pack(255, 255, 255)
};
const std::array<uint32_t, 16> &palette() {
if constexpr (is_yamaha_vdp(personality)) {
return Storage<personality>::solid_background_ ? Storage<personality>::palette_ : Storage<personality>::background_palette_;
}
return default_palette;
}
Outputs::CRT::CRT crt_;
TVStandard tv_standard_ = TVStandard::NTSC;
using AddressT = typename Storage<personality>::AddressT;
/// Mutates @c target such that @c source replaces the @c length bits that currently start
/// at bit @c shift . Subsequently ensures @c target is constrained by the
/// applicable @c memory_mask.
template <int shift, int length = 8> void install_field(AddressT &target, uint8_t source) {
static_assert(length > 0 && length <= 8);
constexpr auto source_mask = (1 << length) - 1;
constexpr auto mask = AddressT(~(source_mask << shift));
target = (
(target & mask) |
AddressT((source & source_mask) << shift)
) & memory_mask(personality);
}
// Personality-specific metrics and converters.
ClockConverter<personality> clock_converter_;
// This VDP's DRAM.
std::array<uint8_t, memory_size(personality)> ram_;
// State of the DRAM/CRAM-access mechanism.
AddressT ram_pointer_ = 0;
uint8_t read_ahead_buffer_ = 0;
MemoryAccess queued_access_ = MemoryAccess::None;
int minimum_access_column_ = 0;
// The main status register.
uint8_t status_ = 0;
// Current state of programmer input.
bool write_phase_ = false; // Determines whether the VDP is expecting the low or high byte of a write.
uint8_t low_write_ = 0; // Buffers the low byte of a write.
// Various programmable flags.
bool mode1_enable_ = false;
bool mode2_enable_ = false;
bool mode3_enable_ = false;
bool blank_display_ = false;
bool sprites_16x16_ = false;
bool sprites_magnified_ = false;
bool generate_interrupts_ = false;
uint8_t sprite_height_ = 8;
// Programmer-specified addresses.
//
// The TMS and descendants combine various parts of the address with AND operations,
// e.g. the fourth byte in the pattern name table will be at `pattern_name_address_ & 4`;
// ordinarily the difference between that and plain substitution is invisible because
// the programmer mostly can't set low-enough-order bits. That's not universally true
// though, so this implementation uses AND throughout.
//
// ... therefore, all programmer-specified addresses are seeded as all '1's. As and when
// actual addresses are specified, the relevant bits will be substituted in.
//
// Cf. install_field.
AddressT pattern_name_address_ = memory_mask(personality); // Address of the tile map.
AddressT colour_table_address_ = memory_mask(personality); // Address of the colour map (if applicable).
AddressT pattern_generator_table_address_ = memory_mask(personality); // Address of the tile contents.
AddressT sprite_attribute_table_address_ = memory_mask(personality); // Address of the sprite list.
AddressT sprite_generator_table_address_ = memory_mask(personality); // Address of the sprite contents.
// Default colours.
uint8_t text_colour_ = 0;
uint8_t background_colour_ = 0;
// Internal mechanisms for position tracking.
int latched_column_ = 0;
// A struct to contain timing information that is a function of the current mode.
struct {
/*
Vertical layout:
Lines 0 to [pixel_lines]: standard data fetch and drawing will occur.
... to [first_vsync_line]: refresh fetches will occur and border will be output.
.. to [2.5 or 3 lines later]: vertical sync is output.
... to [total lines - 1]: refresh fetches will occur and border will be output.
... for one line: standard data fetch will occur, without drawing.
*/
int total_lines = 262;
int pixel_lines = 192;
int first_vsync_line = 227;
// Maximum number of sprite slots to populate;
// if sprites beyond this number should be visible
// then the appropriate status information will be set.
int maximum_visible_sprites = 4;
// Set the position, in cycles, of the two interrupts,
// within a line.
//
// TODO: redetermine where this number came from.
struct {
int column = 313;
int row = 192;
} end_of_frame_interrupt_position;
int line_interrupt_position = -1;
// Enables or disabled the recognition of the sprite
// list terminator, and sets the terminator value.
bool allow_sprite_terminator = true;
uint8_t sprite_terminator(ScreenMode mode) {
switch(mode) {
default: return 0xd0;
case ScreenMode::YamahaGraphics3:
case ScreenMode::YamahaGraphics4:
case ScreenMode::YamahaGraphics5:
case ScreenMode::YamahaGraphics6:
case ScreenMode::YamahaGraphics7:
return 0xd8;
}
}
} mode_timing_;
uint8_t line_interrupt_target_ = 0xff;
uint8_t line_interrupt_counter_ = 0;
bool enable_line_interrupts_ = false;
bool line_interrupt_pending_ = false;
bool vertical_active_ = false;
ScreenMode screen_mode_, underlying_mode_;
using LineBufferArray = std::array<LineBuffer, 313>;
LineBufferArray line_buffers_;
LineBufferArray::iterator fetch_line_buffer_;
LineBufferArray::iterator draw_line_buffer_;
void advance(LineBufferArray::iterator &iterator) {
++iterator;
if(iterator == line_buffers_.end()) {
iterator = line_buffers_.begin();
}
}
using SpriteBufferArray = std::array<SpriteBuffer, 313>;
SpriteBufferArray sprite_buffers_;
SpriteBufferArray::iterator fetch_sprite_buffer_;
SpriteBuffer *fetched_sprites_ = nullptr;
void advance(SpriteBufferArray::iterator &iterator) {
++iterator;
if(iterator == sprite_buffers_.end()) {
iterator = sprite_buffers_.begin();
}
}
void regress(SpriteBufferArray::iterator &iterator) {
if(iterator == sprite_buffers_.begin()) {
iterator = sprite_buffers_.end();
}
--iterator;
}
AddressT tile_offset_ = 0;
uint8_t name_[4]{};
void posit_sprite(int sprite_number, int sprite_y, uint8_t screen_row);
// There is a delay between reading into the line buffer and outputting from there to the screen. That delay
// is observeable because reading time affects availability of memory accesses and therefore time in which
// to update sprites and tiles, but writing time affects when the palette is used and when the collision flag
// may end up being set. So the two processes are slightly decoupled. The end of reading one line may overlap
// with the beginning of writing the next, hence the two separate line buffers.
LineBufferPointer output_pointer_, fetch_pointer_;
int fetch_line() const;
bool is_horizontal_blank() const;
VerticalState vertical_state() const;
int masked_address(int address) const;
void write_vram(uint8_t);
void write_register(uint8_t);
void write_palette(uint8_t);
void write_register_indirect(uint8_t);
uint8_t read_vram();
uint8_t read_register();
void commit_register(int reg, uint8_t value);
template <bool check_blank> ScreenMode current_screen_mode() const {
if(check_blank && blank_display_) {
return ScreenMode::Blank;
}
if constexpr (is_sega_vdp(personality)) {
if(Storage<personality>::mode4_enable_) {
return ScreenMode::SMSMode4;
}
}
if constexpr (is_yamaha_vdp(personality)) {
switch(Storage<personality>::mode_) {
case 0b00001: return ScreenMode::Text;
case 0b01001: return ScreenMode::YamahaText80;
case 0b00010: return ScreenMode::MultiColour;
case 0b00000: return ScreenMode::YamahaGraphics1;
case 0b00100: return ScreenMode::YamahaGraphics2;
case 0b01000: return ScreenMode::YamahaGraphics3;
case 0b01100: return ScreenMode::YamahaGraphics4;
case 0b10000: return ScreenMode::YamahaGraphics5;
case 0b10100: return ScreenMode::YamahaGraphics6;
case 0b11100: return ScreenMode::YamahaGraphics7;
}
}
if(!mode1_enable_ && !mode2_enable_ && !mode3_enable_) {
return ScreenMode::ColouredText;
}
if(mode1_enable_ && !mode2_enable_ && !mode3_enable_) {
return ScreenMode::Text;
}
if(!mode1_enable_ && mode2_enable_ && !mode3_enable_) {
return ScreenMode::Graphics;
}
if(!mode1_enable_ && !mode2_enable_ && mode3_enable_) {
return ScreenMode::MultiColour;
}
// TODO: undocumented TMS modes.
return ScreenMode::Blank;
}
static AddressT rotate(AddressT address) {
return AddressT((address >> 1) | (address << 16)) & memory_mask(personality);
}
AddressT command_address(Vector location, bool expansion) const {
if constexpr (is_yamaha_vdp(personality)) {
switch(this->underlying_mode_) {
default:
case ScreenMode::YamahaGraphics4: // 256 pixels @ 4bpp
return AddressT(
((location.v[0] >> 1) & 127) +
(location.v[1] << 7)
);
case ScreenMode::YamahaGraphics5: // 512 pixels @ 2bpp
return AddressT(
((location.v[0] >> 2) & 127) +
(location.v[1] << 7)
);
case ScreenMode::YamahaGraphics6: { // 512 pixels @ 4bpp
const auto linear_address =
AddressT(
((location.v[0] >> 1) & 255) +
(location.v[1] << 8)
);
return expansion ? linear_address : rotate(linear_address);
}
case ScreenMode::YamahaGraphics7: { // 256 pixels @ 8bpp
const auto linear_address =
AddressT(
((location.v[0] >> 0) & 255) +
(location.v[1] << 8)
);
return expansion ? linear_address : rotate(linear_address);
}
}
} else {
return 0;
}
}
uint8_t extract_colour(uint8_t byte, Vector location) const {
switch(this->screen_mode_) {
default:
case ScreenMode::YamahaGraphics4: // 256 pixels @ 4bpp
case ScreenMode::YamahaGraphics6: // 512 pixels @ 4bpp
return (byte >> (((location.v[0] & 1) ^ 1) << 2)) & 0xf;
case ScreenMode::YamahaGraphics5: // 512 pixels @ 2bpp
return (byte >> (((location.v[0] & 3) ^ 3) << 1)) & 0x3;
case ScreenMode::YamahaGraphics7: // 256 pixels @ 8bpp
return byte;
}
}
std::pair<uint8_t, uint8_t> command_colour_mask(Vector location) const {
if constexpr (is_yamaha_vdp(personality)) {
auto &context = Storage<personality>::command_context_;
auto colour = context.latched_colour.has_value() ? context.latched_colour : context.colour;
switch(this->screen_mode_) {
default:
case ScreenMode::YamahaGraphics4: // 256 pixels @ 4bpp
case ScreenMode::YamahaGraphics6: // 512 pixels @ 4bpp
return
std::make_pair(
0xf0 >> ((location.v[0] & 1) << 2),
colour.colour4bpp
);
case ScreenMode::YamahaGraphics5: // 512 pixels @ 2bpp
return
std::make_pair(
0xc0 >> ((location.v[0] & 3) << 1),
colour.colour2bpp
);
case ScreenMode::YamahaGraphics7: // 256 pixels @ 8bpp
return
std::make_pair(
0xff,
colour.colour
);
}
} else {
return std::make_pair(0, 0);
}
}
void do_external_slot(int access_column) {
// Don't do anything if the required time for the access to become executable
// has yet to pass.
if(queued_access_ == MemoryAccess::None || access_column < minimum_access_column_) {
if constexpr (is_yamaha_vdp(personality)) {
using CommandStep = typename Storage<personality>::CommandStep;
if(
Storage<personality>::next_command_step_ == CommandStep::None ||
access_column < Storage<personality>::minimum_command_column_
) {
return;
}
auto &context = Storage<personality>::command_context_;
const uint8_t *const source = (context.arguments & 0x10) ? Storage<personality>::expansion_ram_.data() : ram_.data();
const AddressT source_mask = (context.arguments & 0x10) ? 0xfff : 0x1ffff;
uint8_t *const destination = (context.arguments & 0x20) ? Storage<personality>::expansion_ram_.data() : ram_.data();
const AddressT destination_mask = (context.arguments & 0x20) ? 0xfff : 0x1ffff;
switch(Storage<personality>::next_command_step_) {
// Duplicative, but keeps the compiler happy.
case CommandStep::None:
break;
case CommandStep::CopySourcePixelToStatus:
Storage<personality>::colour_status_ =
extract_colour(
source[command_address(context.source, context.arguments & 0x10) & source_mask],
context.source
);
Storage<personality>::command_->advance();
Storage<personality>::update_command_step(access_column);
break;
case CommandStep::ReadSourcePixel:
context.latched_colour.set(
extract_colour(
source[command_address(context.source, context.arguments & 0x10)] & source_mask,
context.source)
);
Storage<personality>::minimum_command_column_ = access_column + 32;
Storage<personality>::next_command_step_ = CommandStep::ReadDestinationPixel;
break;
case CommandStep::ReadDestinationPixel:
Storage<personality>::command_latch_ =
source[command_address(context.destination, context.arguments & 0x20) & source_mask];
Storage<personality>::minimum_command_column_ = access_column + 24;
Storage<personality>::next_command_step_ = CommandStep::WritePixel;
break;
case CommandStep::WritePixel: {
const auto [mask, unmasked_colour] = command_colour_mask(context.destination);
const auto address = command_address(context.destination, context.arguments & 0x20) & destination_mask;
const uint8_t colour = unmasked_colour & mask;
context.latched_colour.reset();
using LogicalOperation = CommandContext::LogicalOperation;
if(!context.test_source || colour) {
switch(context.pixel_operation) {
default:
case LogicalOperation::Copy:
Storage<personality>::command_latch_ &= ~mask;
Storage<personality>::command_latch_ |= colour;
break;
case LogicalOperation::And:
Storage<personality>::command_latch_ &= ~mask | colour;
break;
case LogicalOperation::Or:
Storage<personality>::command_latch_ |= colour;
break;
case LogicalOperation::Xor:
Storage<personality>::command_latch_ ^= colour;
break;
case LogicalOperation::Not:
Storage<personality>::command_latch_ &= ~mask;
Storage<personality>::command_latch_ |= colour ^ mask;
break;
}
}
destination[address] = Storage<personality>::command_latch_;
Storage<personality>::command_->advance();
Storage<personality>::update_command_step(access_column);
} break;
case CommandStep::ReadSourceByte: {
Vector source_vector = context.source;
if(Storage<personality>::command_->y_only) {
source_vector.v[0] = context.destination.v[0];
}
context.latched_colour.set(source[command_address(source_vector, context.arguments & 0x10) & source_mask]);
Storage<personality>::minimum_command_column_ = access_column + 24;
Storage<personality>::next_command_step_ = CommandStep::WriteByte;
} break;
case CommandStep::WriteByte:
destination[command_address(context.destination, context.arguments & 0x20) & destination_mask]
= context.latched_colour.has_value() ? context.latched_colour.colour : context.colour.colour;
context.latched_colour.reset();
Storage<personality>::command_->advance();
Storage<personality>::update_command_step(access_column);
break;
}
}
return;
}
// Copy and mutate the RAM pointer.
AddressT address = ram_pointer_;
++ram_pointer_;
// Determine the relevant RAM and its mask.
uint8_t *ram = ram_.data();
AddressT mask = memory_mask(personality);
if constexpr (is_yamaha_vdp(personality)) {
// The Yamaha increments only 14 bits of the address in TMS-compatible modes.
if(this->underlying_mode_ < ScreenMode::YamahaText80) {
ram_pointer_ = (ram_pointer_ & 0x3fff) | (address & AddressT(~0x3fff));
}
if(this->underlying_mode_ == ScreenMode::YamahaGraphics6 || this->underlying_mode_ == ScreenMode::YamahaGraphics7) {
// Rotate address one to the right as the hardware accesses
// the underlying banks of memory alternately but presents
// them as if linear.
address = rotate(address);
}
// Also check whether expansion RAM is the true target here.
if(Storage<personality>::command_context_.arguments & 0x40) {
ram = Storage<personality>::expansion_ram_.data();
mask = AddressT(Storage<personality>::expansion_ram_.size() - 1);
}
}
switch(queued_access_) {
default: break;
case MemoryAccess::Write:
if constexpr (is_sega_vdp(personality)) {
if(Storage<personality>::cram_is_selected_) {
// Adjust the palette. In a Master System blue has a slightly different
// scale; cf. https://www.retrorgb.com/sega-master-system-non-linear-blue-channel-findings.html
constexpr uint8_t rg_scale[] = {0, 85, 170, 255};
constexpr uint8_t b_scale[] = {0, 104, 170, 255};
Storage<personality>::colour_ram_[address & 0x1f] = palette_pack(
rg_scale[(read_ahead_buffer_ >> 0) & 3],
rg_scale[(read_ahead_buffer_ >> 2) & 3],
b_scale[(read_ahead_buffer_ >> 4) & 3]
);
// Schedule a CRAM dot; this is scheduled for wherever it should appear
// on screen. So it's wherever the output stream would be now. Which
// is output_lag cycles ago from the point of view of the input stream.
auto &dot = Storage<personality>::upcoming_cram_dots_.emplace_back();
dot.location.column = fetch_pointer_.column - output_lag;
dot.location.row = fetch_pointer_.row;
// Handle before this row conditionally; then handle after (or, more realistically,
// exactly at the end of) naturally.
if(dot.location.column < 0) {
--dot.location.row;
dot.location.column += 342;
}
dot.location.row += dot.location.column / 342;
dot.location.column %= 342;
dot.value = Storage<personality>::colour_ram_[address & 0x1f];
break;
}
}
ram[address & mask] = read_ahead_buffer_;
break;
case MemoryAccess::Read:
read_ahead_buffer_ = ram[address & mask];
break;
}
queued_access_ = MemoryAccess::None;
}
/// Helper for TMS dispatches; contains a switch statement with cases 0 to 170, each of the form:
///
/// if constexpr (use_end && end == n) return; [[fallthrough]]; case n: fetcher.fetch<n>();
///
/// i.e. it provides standard glue to enter a fetch sequence at any point, while the fetches themselves are templated on the cycle
/// at which they appear for neater expression.
template<bool use_end, typename Fetcher> void dispatch(Fetcher &fetcher, int start, int end);
// Various fetchers.
template<bool use_end> void fetch_tms_refresh(uint8_t y, int start, int end);
template<bool use_end> void fetch_tms_text(uint8_t y, int start, int end);
template<bool use_end> void fetch_tms_character(uint8_t y, int start, int end);
template<bool use_end> void fetch_yamaha(uint8_t y, int start, int end);
template<ScreenMode> void fetch_yamaha(uint8_t y, int end);
template<bool use_end> void fetch_sms(uint8_t y, int start, int end);
// A helper function to output the current border colour for
// the number of cycles supplied.
void output_border(int cycles, uint32_t cram_dot);
// Output serialisation state.
uint32_t *pixel_target_ = nullptr, *pixel_origin_ = nullptr;
bool asked_for_write_area_ = false;
// Output serialisers.
template <SpriteMode mode = SpriteMode::Mode1> void draw_tms_character(int start, int end);
template <bool apply_blink> void draw_tms_text(int start, int end);
void draw_sms(int start, int end, uint32_t cram_dot);
template<ScreenMode mode> void draw_yamaha(uint8_t y, int start, int end);
void draw_yamaha(uint8_t y, int start, int end);
template <SpriteMode mode, bool double_width> void draw_sprites(uint8_t y, int start, int end, const std::array<uint32_t, 16> &palette, int *colour_buffer = nullptr);
};
#include "Fetch.hpp"
#include "Draw.hpp"
}
#endif /* TMS9918Base_hpp */