1
0
mirror of https://github.com/TomHarte/CLK.git synced 2024-11-26 23:52:26 +00:00
CLK/Storage/Disk/DPLL/DigitalPhaseLockedLoop.hpp
2020-01-28 23:25:21 -05:00

137 lines
4.0 KiB
C++

//
// DigitalPhaseLockedLoop.hpp
// Clock Signal
//
// Created by Thomas Harte on 11/07/2016.
// Copyright 2016 Thomas Harte. All rights reserved.
//
#ifndef DigitalPhaseLockedLoop_hpp
#define DigitalPhaseLockedLoop_hpp
#include <array>
#include <cassert>
#include <memory>
#include <vector>
#include "../../../ClockReceiver/ClockReceiver.hpp"
namespace Storage {
/*!
Template parameters:
@c bit_handler A class that must implement a method, digital_phase_locked_loop_output_bit(int) for receving bits from the DPLL.
@c length_of_history The number of historic pulses to consider in locking to phase.
*/
template <typename BitHandler, size_t length_of_history = 3> class DigitalPhaseLockedLoop {
public:
/*!
Instantiates a @c DigitalPhaseLockedLoop.
@param clocks_per_bit The expected number of cycles between each bit of input.
*/
DigitalPhaseLockedLoop(int clocks_per_bit, BitHandler &handler) :
bit_handler_(handler), window_length_(clocks_per_bit), clocks_per_bit_(clocks_per_bit) {}
/*!
Changes the expected window length.
*/
void set_clocks_per_bit(int clocks_per_bit) {
window_length_ = clocks_per_bit_ = clocks_per_bit;
}
/*!
Runs the loop, impliedly posting no pulses during that period.
@c number_of_cycles The time to run the loop for.
*/
void run_for(const Cycles cycles) {
offset_ += cycles.as_integral();
phase_ += cycles.as_integral();
if(phase_ >= window_length_) {
auto windows_crossed = phase_ / window_length_;
// Check whether this triggers any 0s.
if(window_was_filled_) --windows_crossed;
for(int c = 0; c < windows_crossed; c++)
bit_handler_.digital_phase_locked_loop_output_bit(0);
window_was_filled_ = false;
phase_ %= window_length_;
}
}
/*!
Announces a pulse at the current time.
*/
void add_pulse() {
if(!window_was_filled_) {
bit_handler_.digital_phase_locked_loop_output_bit(1);
window_was_filled_ = true;
post_phase_offset(phase_, offset_);
offset_ = 0;
}
}
private:
BitHandler &bit_handler_;
void post_phase_offset(Cycles::IntType new_phase, Cycles::IntType new_offset) {
// Erase the effect of whatever is currently in this slot.
total_divisor_ -= offset_history_[offset_history_pointer_].divisor;
total_spacing_ -= offset_history_[offset_history_pointer_].spacing;
// Fill in the new fields.
const auto multiple = std::max((new_offset + (clocks_per_bit_ >> 1)) / clocks_per_bit_, Cycles::IntType(1));
offset_history_[offset_history_pointer_].divisor = multiple;
offset_history_[offset_history_pointer_].spacing = new_offset;
// Add in the new values;
total_divisor_ += offset_history_[offset_history_pointer_].divisor;
total_spacing_ += offset_history_[offset_history_pointer_].spacing;
// Advance the write slot.
offset_history_pointer_ = (offset_history_pointer_ + 1) % offset_history_.size();
#ifndef NDEBUG
Cycles::IntType td = 0, ts = 0;
for(auto offset: offset_history_) {
td += offset.divisor;
ts += offset.spacing;
}
assert(ts == total_spacing_);
assert(td == total_divisor_);
#endif
// In net: use an unweighted average of the stored offsets to compute current window size,
// bucketing them by rounding to the nearest multiple of the base clocks per bit
window_length_ = std::max(total_spacing_ / total_divisor_, Cycles::IntType(1));
// Also apply a difference to phase, use a simple spring mechanism as a lowpass filter.
const auto error = new_phase - (window_length_ >> 1);
phase_ -= (error + 1) >> 1;
}
struct LoggedOffset {
Cycles::IntType divisor = 1, spacing = 1;
};
std::array<LoggedOffset, length_of_history> offset_history_;
std::size_t offset_history_pointer_ = 0;
Cycles::IntType total_spacing_ = length_of_history;
Cycles::IntType total_divisor_ = length_of_history;
Cycles::IntType phase_ = 0;
Cycles::IntType window_length_ = 0;
Cycles::IntType offset_ = 0;
bool window_was_filled_ = false;
int clocks_per_bit_ = 0;
};
}
#endif /* DigitalPhaseLockedLoop_hpp */