mirror of
https://github.com/TomHarte/CLK.git
synced 2025-01-12 00:30:31 +00:00
300 lines
6.9 KiB
C++
300 lines
6.9 KiB
C++
//
|
||
// RealTimeClock.hpp
|
||
// Clock Signal
|
||
//
|
||
// Created by Thomas Harte on 07/05/2019.
|
||
// Copyright © 2019 Thomas Harte. All rights reserved.
|
||
//
|
||
|
||
#ifndef Apple_RealTimeClock_hpp
|
||
#define Apple_RealTimeClock_hpp
|
||
|
||
#include <array>
|
||
|
||
namespace Apple {
|
||
namespace Clock {
|
||
|
||
/*!
|
||
Models Apple's real-time clocks, as contained in the Macintosh and IIgs.
|
||
|
||
Since tracking of time is pushed to this class, it is assumed
|
||
that whomever is translating real time into emulated time
|
||
will also signal interrupts — this is just the storage and time counting.
|
||
*/
|
||
class ClockStorage {
|
||
public:
|
||
ClockStorage() {}
|
||
|
||
/*!
|
||
Advances the clock by 1 second.
|
||
|
||
The caller should also signal an interrupt if applicable.
|
||
*/
|
||
void update() {
|
||
for(size_t c = 0; c < 4; ++c) {
|
||
++seconds_[c];
|
||
if(seconds_[c]) break;
|
||
}
|
||
}
|
||
|
||
/*!
|
||
Sets the current [P/B]RAM contents.
|
||
*/
|
||
template <typename CollectionT> void set_data(const CollectionT &collection) {
|
||
set_data(collection.begin(), collection.end());
|
||
}
|
||
|
||
template <typename IteratorT> void set_data(IteratorT begin, const IteratorT end) {
|
||
size_t c = 0;
|
||
while(begin != end && c < 256) {
|
||
data_[c] = *begin;
|
||
++begin;
|
||
++c;
|
||
}
|
||
}
|
||
|
||
protected:
|
||
static constexpr uint16_t NoResult = 0x100;
|
||
static constexpr uint16_t DidComplete = 0x101;
|
||
uint16_t perform(uint8_t command) {
|
||
/*
|
||
Documented commands:
|
||
|
||
z0000001 Seconds register 0 (lowest order byte)
|
||
z0000101 Seconds register 1
|
||
z0001001 Seconds register 2
|
||
z0001101 Seconds register 3
|
||
00110001 Test register (write only)
|
||
00110101 Write-protect register (write only)
|
||
z010aa01 RAM addresses 0x10 - 0x13
|
||
z1aaaa01 RAM addresses 0x00 – 0x0f
|
||
|
||
z0111abc, followed by 0defgh00
|
||
RAM address abcdefgh
|
||
|
||
z = 1 => a read; z = 0 => a write.
|
||
|
||
The top bit of the write-protect register enables (0) or disables (1)
|
||
writes to other locations.
|
||
|
||
All the documentation says about the test register is to set the top
|
||
two bits to 0 for normal operation. Abnormal operation is undefined.
|
||
*/
|
||
switch(phase_) {
|
||
case Phase::Command:
|
||
// Decode an address.
|
||
switch(command & 0x70) {
|
||
default:
|
||
if(command & 0x40) {
|
||
// RAM addresses 0x00 – 0x0f.
|
||
address_ = (command >> 2) & 0xf;
|
||
} else return DidComplete; // Unrecognised.
|
||
break;
|
||
|
||
case 0x00:
|
||
// A time access.
|
||
address_ = SecondsBuffer + ((command >> 2)&3);
|
||
break;
|
||
case 0x30:
|
||
// Either a register access or an extended instruction.
|
||
if(command & 0x08) {
|
||
address_ = unsigned((command & 0x7) << 5);
|
||
phase_ = (command & 0x80) ? Phase::SecondAddressByteRead : Phase::SecondAddressByteWrite;
|
||
return NoResult;
|
||
} else {
|
||
address_ = (command & 4) ? RegisterWriteProtect : RegisterTest;
|
||
}
|
||
break;
|
||
case 0x20:
|
||
// RAM addresses 0x10 – 0x13.
|
||
address_ = 0x10 + ((command >> 2) & 0x3);
|
||
break;
|
||
}
|
||
|
||
// If this is a read, return a result; otherwise prepare to write.
|
||
if(command & 0x80) {
|
||
// The two registers are write-only.
|
||
if(address_ == RegisterTest || address_ == RegisterWriteProtect) {
|
||
return DidComplete;
|
||
}
|
||
return (address_ >= SecondsBuffer) ? seconds_[address_ & 0xff] : data_[address_];
|
||
}
|
||
phase_ = Phase::WriteData;
|
||
return NoResult;
|
||
|
||
case Phase::SecondAddressByteRead:
|
||
case Phase::SecondAddressByteWrite:
|
||
if(command & 0x83) {
|
||
return DidComplete;
|
||
}
|
||
address_ |= command >> 2;
|
||
|
||
if(phase_ == Phase::SecondAddressByteRead) {
|
||
phase_ = Phase::Command;
|
||
return data_[address_]; // Only RAM accesses can get this far.
|
||
} else {
|
||
phase_ = Phase::WriteData;
|
||
}
|
||
return NoResult;
|
||
|
||
case Phase::WriteData:
|
||
// First test: is this to the write-protect register?
|
||
if(address_ == RegisterWriteProtect) {
|
||
write_protect_ = command;
|
||
return DidComplete;
|
||
}
|
||
|
||
if(address_ == RegisterTest) {
|
||
// No documentation here.
|
||
return DidComplete;
|
||
}
|
||
|
||
// No other writing is permitted if the write protect
|
||
// register won't allow it.
|
||
if(!(write_protect_ & 0x80)) {
|
||
if(address_ >= SecondsBuffer) {
|
||
seconds_[address_ & 0xff] = command;
|
||
} else {
|
||
data_[address_] = command;
|
||
}
|
||
}
|
||
|
||
phase_ = Phase::Command;
|
||
return DidComplete;
|
||
}
|
||
|
||
return NoResult;
|
||
}
|
||
|
||
|
||
private:
|
||
std::array<uint8_t, 256> data_{0xff};
|
||
std::array<uint8_t, 4> seconds_{};
|
||
uint8_t write_protect_ = 0;
|
||
unsigned int address_ = 0;
|
||
|
||
static constexpr int SecondsBuffer = 0x100;
|
||
static constexpr int RegisterTest = 0x200;
|
||
static constexpr int RegisterWriteProtect = 0x201;
|
||
|
||
enum class Phase {
|
||
Command,
|
||
SecondAddressByteRead,
|
||
SecondAddressByteWrite,
|
||
WriteData
|
||
};
|
||
Phase phase_ = Phase::Command;
|
||
|
||
};
|
||
|
||
/*!
|
||
Provides the serial interface implemented by the Macintosh.
|
||
*/
|
||
class SerialClock: public ClockStorage {
|
||
public:
|
||
/*!
|
||
Sets the current clock and data inputs to the clock.
|
||
*/
|
||
void set_input(bool clock, bool data) {
|
||
// The data line is valid when the clock transitions to level 0.
|
||
if(clock && !previous_clock_) {
|
||
// Shift into the command_ register, no matter what.
|
||
command_ = uint16_t((command_ << 1) | (data ? 1 : 0));
|
||
result_ <<= 1;
|
||
|
||
// Increment phase.
|
||
++phase_;
|
||
|
||
// If a whole byte has been collected, push it onwards.
|
||
if(!(phase_&7)) {
|
||
// Begin pessimistically.
|
||
const auto effect = perform(uint8_t(command_));
|
||
|
||
switch(effect) {
|
||
case ClockStorage::NoResult:
|
||
break;
|
||
default:
|
||
result_ = uint8_t(effect);
|
||
break;
|
||
case ClockStorage::DidComplete:
|
||
abort();
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
previous_clock_ = clock;
|
||
}
|
||
|
||
/*!
|
||
Reads the current data output level from the clock.
|
||
*/
|
||
bool get_data() {
|
||
return !!(result_ & 0x80);
|
||
}
|
||
|
||
/*!
|
||
Announces that a serial command has been aborted.
|
||
*/
|
||
void abort() {
|
||
result_ = 0;
|
||
phase_ = 0;
|
||
command_ = 0;
|
||
}
|
||
|
||
private:
|
||
int phase_ = 0;
|
||
uint16_t command_;
|
||
uint8_t result_ = 0;
|
||
|
||
bool previous_clock_ = false;
|
||
};
|
||
|
||
/*!
|
||
Provides the parallel interface implemented by the IIgs.
|
||
*/
|
||
class ParallelClock: public ClockStorage {
|
||
public:
|
||
void set_control(uint8_t control) {
|
||
if(!(control&0x80)) return;
|
||
|
||
if(control & 0x40) {
|
||
// Read from the RTC.
|
||
// A no-op for now.
|
||
} else {
|
||
// Write to the RTC. Which in this implementation also sets up a future read.
|
||
const auto result = perform(data_);
|
||
if(result < 0x100) {
|
||
data_ = uint8_t(result);
|
||
}
|
||
}
|
||
|
||
// MAGIC! The transaction took 0 seconds.
|
||
// TODO: no magic.
|
||
control_ = control & 0x7f;
|
||
|
||
// Bit 5 is also meant to be 1 or 0 to indicate the final byte.
|
||
}
|
||
|
||
uint8_t get_control() {
|
||
return control_;
|
||
}
|
||
|
||
void set_data(uint8_t data) {
|
||
data_ = data;
|
||
}
|
||
|
||
uint8_t get_data() {
|
||
return data_;
|
||
}
|
||
|
||
private:
|
||
uint8_t data_;
|
||
uint8_t control_;
|
||
};
|
||
|
||
}
|
||
}
|
||
|
||
#endif /* Apple_RealTimeClock_hpp */
|