1
0
mirror of https://github.com/TomHarte/CLK.git synced 2024-11-30 04:50:08 +00:00
CLK/Machines/PCCompatible/PCCompatible.cpp
2023-11-23 22:47:31 -05:00

1111 lines
31 KiB
C++

//
// PCCompatible.cpp
// Clock Signal
//
// Created by Thomas Harte on 15/11/2023.
// Copyright © 2023 Thomas Harte. All rights reserved.
//
#include "PCCompatible.hpp"
#include "DMA.hpp"
#include "PIC.hpp"
#include "PIT.hpp"
#include "../../InstructionSets/x86/Decoder.hpp"
#include "../../InstructionSets/x86/Flags.hpp"
#include "../../InstructionSets/x86/Instruction.hpp"
#include "../../InstructionSets/x86/Perform.hpp"
#include "../../Components/6845/CRTC6845.hpp"
#include "../../Components/8255/i8255.hpp"
#include "../../Components/AudioToggle/AudioToggle.hpp"
#include "../../Numeric/RegisterSizes.hpp"
#include "../../Outputs/CRT/CRT.hpp"
#include "../../Outputs/Speaker/Implementation/LowpassSpeaker.hpp"
#include "../AudioProducer.hpp"
#include "../ScanProducer.hpp"
#include "../TimedMachine.hpp"
#include <array>
#include <iostream>
namespace PCCompatible {
class KeyboardController {
public:
KeyboardController(PIC &pic) : pic_(pic) {}
// KB Status Port 61h high bits:
//; 01 - normal operation. wait for keypress, when one comes in,
//; force data line low (forcing keyboard to buffer additional
//; keypresses) and raise IRQ1 high
//; 11 - stop forcing data line low. lower IRQ1 and don't raise it again.
//; drop all incoming keypresses on the floor.
//; 10 - lower IRQ1 and force clock line low, resetting keyboard
//; 00 - force clock line low, resetting keyboard, but on a 01->00 transition,
//; IRQ1 would remain high
void set_mode(uint8_t mode) {
mode_ = Mode(mode);
switch(mode_) {
case Mode::NormalOperation: break;
case Mode::NoIRQsIgnoreInput:
pic_.apply_edge<1>(false);
break;
case Mode::ClearIRQReset:
pic_.apply_edge<1>(false);
[[fallthrough]];
case Mode::Reset:
reset_delay_ = 5; // Arbitrarily.
break;
}
}
void run_for(Cycles cycles) {
if(reset_delay_ <= 0) {
return;
}
reset_delay_ -= cycles.as<int>();
if(reset_delay_ <= 0) {
post(0xaa);
}
}
uint8_t read() {
pic_.apply_edge<1>(false);
const uint8_t key = input_;
input_ = 0;
return key;
}
private:
void post(uint8_t value) {
input_ = value;
pic_.apply_edge<1>(true);
}
enum class Mode {
NormalOperation = 0b01,
NoIRQsIgnoreInput = 0b11,
ClearIRQReset = 0b10,
Reset = 0b00,
} mode_;
uint8_t input_ = 0;
PIC &pic_;
int reset_delay_ = 0;
};
class MDA {
public:
MDA() : crtc_(Motorola::CRTC::Personality::HD6845S, outputter_) {}
void set_source(const uint8_t *ram, std::vector<uint8_t> font) {
outputter_.ram = ram;
outputter_.font = font;
}
void run_for(Cycles cycles) {
// I _think_ the MDA's CRTC is clocked at 14/9ths the PIT clock.
// Do that conversion here.
full_clock_ += 14 * cycles.as<int>();
crtc_.run_for(Cycles(full_clock_ / 9));
full_clock_ %= 9;
}
template <int address>
void write(uint8_t value) {
if constexpr (address & 0x8) {
printf("TODO: write MDA control %02x\n", value);
} else {
if constexpr (address & 0x1) {
crtc_.set_register(value);
} else {
crtc_.select_register(value);
}
}
}
template <int address>
uint8_t read() {
if constexpr (address & 0x8) {
printf("TODO: read MDA control\n");
return 0xff;
} else {
return crtc_.get_register();
}
}
// MARK: - Call-ins for ScanProducer.
void set_scan_target(Outputs::Display::ScanTarget *scan_target) {
outputter_.crt.set_scan_target(scan_target);
}
Outputs::Display::ScanStatus get_scaled_scan_status() const {
return outputter_.crt.get_scaled_scan_status() / 4.0f;
}
private:
struct CRTCOutputter {
CRTCOutputter() :
crt(882, 9, 382, 3, Outputs::Display::InputDataType::Red2Green2Blue2)
// TODO: really this should be a Luminance8 and set an appropriate modal tint colour;
// consider whether that's worth building into the scan target.
{
// crt.set_visible_area(Outputs::Display::Rect(0.1072f, 0.1f, 0.842105263157895f, 0.842105263157895f));
crt.set_display_type(Outputs::Display::DisplayType::RGB);
}
void perform_bus_cycle_phase1(const Motorola::CRTC::BusState &state) {
// Determine new output state.
const OutputState new_state =
(state.hsync | state.vsync) ? OutputState::Sync :
(state.display_enable ? OutputState::Pixels : OutputState::Border);
// Upon either a state change or just having accumulated too much local time...
if(new_state != output_state || count > 882) {
// (1) flush preexisting state.
if(count) {
switch(output_state) {
case OutputState::Sync: crt.output_sync(count); break;
case OutputState::Border: crt.output_blank(count); break;
case OutputState::Pixels:
crt.output_data(count);
pixels = pixel_pointer = nullptr;
break;
}
}
// (2) adopt new state.
output_state = new_state;
count = 0;
}
// Collect pixels if applicable.
if(output_state == OutputState::Pixels) {
if(!pixels) {
pixel_pointer = pixels = crt.begin_data(DefaultAllocationSize);
// Flush any period where pixels weren't recorded due to back pressure.
if(pixels && count) {
crt.output_blank(count);
count = 0;
}
}
// TODO: cursor.
if(pixels) {
const uint8_t attributes = ram[((state.refresh_address << 1) + 1) & 0xfff];
const uint8_t glyph = ram[((state.refresh_address << 1) + 0) & 0xfff];
uint8_t row = font[(glyph * 14) + state.row_address];
const uint8_t intensity = (attributes & 0x08) ? 0x0d : 0x09;
uint8_t blank = 0;
// Handle irregular attributes.
// Cf. http://www.seasip.info/VintagePC/mda.html#memmap
switch(attributes) {
case 0x00: case 0x08: case 0x80: case 0x88:
row = 0;
break;
case 0x70: case 0x78: case 0xf0: case 0xf8:
row ^= 0xff;
blank = intensity;
break;
}
if(((attributes & 7) == 1) && state.row_address == 13) {
// Draw as underline.
std::fill(pixel_pointer, pixel_pointer + 9, intensity);
} else {
// Draw according to ROM contents, possibly duplicating final column.
pixel_pointer[0] = (row & 0x80) ? intensity : 0;
pixel_pointer[1] = (row & 0x40) ? intensity : 0;
pixel_pointer[2] = (row & 0x20) ? intensity : 0;
pixel_pointer[3] = (row & 0x10) ? intensity : 0;
pixel_pointer[4] = (row & 0x08) ? intensity : 0;
pixel_pointer[5] = (row & 0x04) ? intensity : 0;
pixel_pointer[6] = (row & 0x02) ? intensity : 0;
pixel_pointer[7] = (row & 0x01) ? intensity : 0;
pixel_pointer[8] = (glyph >= 0xc0 && glyph < 0xe0) ? pixel_pointer[7] : blank;
}
pixel_pointer += 9;
}
}
// Advance.
count += 9;
// Output pixel row prematurely if storage is exhausted.
if(output_state == OutputState::Pixels && pixel_pointer == pixels + DefaultAllocationSize) {
crt.output_data(count);
count = 0;
pixels = pixel_pointer = nullptr;
}
}
void perform_bus_cycle_phase2(const Motorola::CRTC::BusState &) {}
Outputs::CRT::CRT crt;
enum class OutputState {
Sync, Pixels, Border
} output_state = OutputState::Sync;
int count = 0;
uint8_t *pixels = nullptr;
uint8_t *pixel_pointer = nullptr;
static constexpr size_t DefaultAllocationSize = 720;
const uint8_t *ram = nullptr;
std::vector<uint8_t> font;
} outputter_;
Motorola::CRTC::CRTC6845<CRTCOutputter> crtc_;
int full_clock_;
};
struct PCSpeaker {
PCSpeaker() :
toggle(queue),
speaker(toggle) {}
void update() {
speaker.run_for(queue, cycles_since_update);
cycles_since_update = 0;
}
void set_pit(bool pit_input) {
pit_input_ = pit_input;
set_level();
}
void set_control(bool pit_mask, bool level) {
pit_mask_ = pit_mask;
level_ = level;
set_level();
}
void set_level() {
// TODO: eliminate complete guess of mixing function here.
const bool new_output = (pit_mask_ & pit_input_) ^ level_;
if(new_output != output_) {
update();
toggle.set_output(new_output);
output_ = new_output;
}
}
Concurrency::AsyncTaskQueue<false> queue;
Audio::Toggle toggle;
Outputs::Speaker::PullLowpass<Audio::Toggle> speaker;
Cycles cycles_since_update = 0;
bool pit_input_ = false;
bool pit_mask_ = false;
bool level_ = false;
bool output_ = false;
};
class PITObserver {
public:
PITObserver(PIC &pic, PCSpeaker &speaker) : pic_(pic), speaker_(speaker) {}
template <int channel>
void update_output(bool new_level) {
switch(channel) {
default: break;
case 0: pic_.apply_edge<0>(new_level); break;
case 2: speaker_.set_pit(new_level); break;
}
}
private:
PIC &pic_;
PCSpeaker &speaker_;
// TODO:
//
// channel 0 is connected to IRQ 0;
// channel 1 is used for DRAM refresh (presumably connected to DMA?);
// channel 2 is gated by a PPI output and feeds into the speaker.
};
using PIT = i8237<false, PITObserver>;
class i8255PortHandler : public Intel::i8255::PortHandler {
// Likely to be helpful: https://github.com/tmk/tmk_keyboard/wiki/IBM-PC-XT-Keyboard-Protocol
public:
i8255PortHandler(PCSpeaker &speaker, KeyboardController &keyboard) : speaker_(speaker), keyboard_(keyboard) {}
void set_value(int port, uint8_t value) {
switch(port) {
case 1:
// b7: 0 => enable keyboard read (and IRQ); 1 => don't;
// b6: 0 => hold keyboard clock low; 1 => don't;
// b5: 1 => disable IO check; 0 => don't;
// b4: 1 => disable memory parity check; 0 => don't;
// b3: [5150] cassette motor control; [5160] high or low switches select;
// b2: [5150] high or low switches select; [5160] 1 => disable turbo mode;
// b1, b0: speaker control.
enable_keyboard_ = !(value & 0x80);
keyboard_.set_mode(value >> 6);
high_switches_ = value & 0x08;
speaker_.set_control(value & 0x01, value & 0x02);
break;
}
// printf("PPI: %02x to %d\n", value, port);
}
uint8_t get_value(int port) {
switch(port) {
case 0:
// printf("PPI: from keyboard\n");
return enable_keyboard_ ? keyboard_.read() : 0b0011'1100;
// Guesses that switches is high and low combined as below.
case 2:
// Common:
//
// b7: 1 => memory parity error; 0 => none;
// b6: 1 => IO channel error; 0 => none;
// b5: timer 2 output; [TODO]
// b4: cassette data input; [TODO]
return
high_switches_ ?
// b3, b2: drive count; 00 = 1, 01 = 2, etc
// b1, b0: video mode (00 = ROM; 01 = CGA40; 10 = CGA80; 11 = MDA)
0b0000'0011
:
// b3, b2: RAM on motherboard (64 * bit pattern)
// b1: 1 => FPU present; 0 => absent;
// b0: 1 => floppy drive present; 0 => absent.
0b0000'1100;
}
return 0;
};
private:
bool high_switches_ = false;
PCSpeaker &speaker_;
KeyboardController &keyboard_;
bool enable_keyboard_ = false;
};
using PPI = Intel::i8255::i8255<i8255PortHandler>;
struct Registers {
public:
static constexpr bool is_32bit = false;
uint8_t &al() { return ax_.halves.low; }
uint8_t &ah() { return ax_.halves.high; }
uint16_t &ax() { return ax_.full; }
CPU::RegisterPair16 &axp() { return ax_; }
uint8_t &cl() { return cx_.halves.low; }
uint8_t &ch() { return cx_.halves.high; }
uint16_t &cx() { return cx_.full; }
uint8_t &dl() { return dx_.halves.low; }
uint8_t &dh() { return dx_.halves.high; }
uint16_t &dx() { return dx_.full; }
uint8_t &bl() { return bx_.halves.low; }
uint8_t &bh() { return bx_.halves.high; }
uint16_t &bx() { return bx_.full; }
uint16_t &sp() { return sp_; }
uint16_t &bp() { return bp_; }
uint16_t &si() { return si_; }
uint16_t &di() { return di_; }
uint16_t &ip() { return ip_; }
uint16_t &es() { return es_; }
uint16_t &cs() { return cs_; }
uint16_t &ds() { return ds_; }
uint16_t &ss() { return ss_; }
uint16_t es() const { return es_; }
uint16_t cs() const { return cs_; }
uint16_t ds() const { return ds_; }
uint16_t ss() const { return ss_; }
void reset() {
cs_ = 0xffff;
ip_ = 0;
}
private:
CPU::RegisterPair16 ax_;
CPU::RegisterPair16 cx_;
CPU::RegisterPair16 dx_;
CPU::RegisterPair16 bx_;
uint16_t sp_;
uint16_t bp_;
uint16_t si_;
uint16_t di_;
uint16_t es_, cs_, ds_, ss_;
uint16_t ip_;
};
class Segments {
public:
Segments(const Registers &registers) : registers_(registers) {}
using Source = InstructionSet::x86::Source;
/// Posted by @c perform after any operation which *might* have affected a segment register.
void did_update(Source segment) {
switch(segment) {
default: break;
case Source::ES: es_base_ = uint32_t(registers_.es()) << 4; break;
case Source::CS: cs_base_ = uint32_t(registers_.cs()) << 4; break;
case Source::DS: ds_base_ = uint32_t(registers_.ds()) << 4; break;
case Source::SS: ss_base_ = uint32_t(registers_.ss()) << 4; break;
}
}
void reset() {
did_update(Source::ES);
did_update(Source::CS);
did_update(Source::DS);
did_update(Source::SS);
}
uint32_t es_base_, cs_base_, ds_base_, ss_base_;
bool operator ==(const Segments &rhs) const {
return
es_base_ == rhs.es_base_ &&
cs_base_ == rhs.cs_base_ &&
ds_base_ == rhs.ds_base_ &&
ss_base_ == rhs.ss_base_;
}
private:
const Registers &registers_;
};
// TODO: send writes to the ROM area off to nowhere.
struct Memory {
public:
using AccessType = InstructionSet::x86::AccessType;
// Constructor.
Memory(Registers &registers, const Segments &segments) : registers_(registers), segments_(segments) {}
//
// Preauthorisation call-ins. Since only an 8088 is currently modelled, all accesses are implicitly authorised.
//
void preauthorise_stack_write([[maybe_unused]] uint32_t length) {}
void preauthorise_stack_read([[maybe_unused]] uint32_t length) {}
void preauthorise_read([[maybe_unused]] InstructionSet::x86::Source segment, [[maybe_unused]] uint16_t start, [[maybe_unused]] uint32_t length) {}
void preauthorise_read([[maybe_unused]] uint32_t start, [[maybe_unused]] uint32_t length) {}
//
// Access call-ins.
//
// Accesses an address based on segment:offset.
template <typename IntT, AccessType type>
typename InstructionSet::x86::Accessor<IntT, type>::type access(InstructionSet::x86::Source segment, uint16_t offset) {
const uint32_t physical_address = address(segment, offset);
if constexpr (std::is_same_v<IntT, uint16_t>) {
// If this is a 16-bit access that runs past the end of the segment, it'll wrap back
// to the start. So the 16-bit value will need to be a local cache.
if(offset == 0xffff) {
return split_word<type>(physical_address, address(segment, 0));
}
}
return access<IntT, type>(physical_address);
}
// Accesses an address based on physical location.
// int mda_delay = -1; // HACK.
template <typename IntT, AccessType type>
typename InstructionSet::x86::Accessor<IntT, type>::type access(uint32_t address) {
// TEMPORARY HACK.
// if(mda_delay > 0) {
// --mda_delay;
// if(!mda_delay) {
// print_mda();
// }
// }
// if(address >= 0xb'0000 && is_writeable(type)) {
// mda_delay = 100;
// }
// Dispense with the single-byte case trivially.
if constexpr (std::is_same_v<IntT, uint8_t>) {
return memory[address];
} else if(address != 0xf'ffff) {
return *reinterpret_cast<IntT *>(&memory[address]);
} else {
return split_word<type>(address, 0);
}
}
template <typename IntT>
void write_back() {
if constexpr (std::is_same_v<IntT, uint16_t>) {
if(write_back_address_[0] != NoWriteBack) {
memory[write_back_address_[0]] = write_back_value_ & 0xff;
memory[write_back_address_[1]] = write_back_value_ >> 8;
write_back_address_[0] = 0;
}
}
}
//
// Direct write.
//
template <typename IntT>
void preauthorised_write(InstructionSet::x86::Source segment, uint16_t offset, IntT value) {
// Bytes can be written without further ado.
if constexpr (std::is_same_v<IntT, uint8_t>) {
memory[address(segment, offset) & 0xf'ffff] = value;
return;
}
// Words that straddle the segment end must be split in two.
if(offset == 0xffff) {
memory[address(segment, offset) & 0xf'ffff] = value & 0xff;
memory[address(segment, 0x0000) & 0xf'ffff] = value >> 8;
return;
}
const uint32_t target = address(segment, offset) & 0xf'ffff;
// Words that straddle the end of physical RAM must also be split in two.
if(target == 0xf'ffff) {
memory[0xf'ffff] = value & 0xff;
memory[0x0'0000] = value >> 8;
return;
}
// It's safe just to write then.
*reinterpret_cast<uint16_t *>(&memory[target]) = value;
}
//
// Helper for instruction fetch.
//
std::pair<const uint8_t *, size_t> next_code() {
const uint32_t start = segments_.cs_base_ + registers_.ip();
return std::make_pair(&memory[start], 0x10'000 - start);
}
std::pair<const uint8_t *, size_t> all() {
return std::make_pair(memory.data(), 0x10'000);
}
//
// External access.
//
void install(size_t address, const uint8_t *data, size_t length) {
std::copy(data, data + length, memory.begin() + std::vector<uint8_t>::difference_type(address));
}
const uint8_t *at(uint32_t address) {
return &memory[address];
}
// TEMPORARY HACK.
// void print_mda() {
// uint32_t pointer = 0xb'0000;
// for(int y = 0; y < 25; y++) {
// for(int x = 0; x < 80; x++) {
// printf("%c", memory[pointer]);
// pointer += 2; // MDA goes [character, attributes]...; skip the attributes.
// }
// printf("\n");
// }
// }
private:
std::array<uint8_t, 1024*1024> memory{0xff};
Registers &registers_;
const Segments &segments_;
uint32_t segment_base(InstructionSet::x86::Source segment) {
using Source = InstructionSet::x86::Source;
switch(segment) {
default: return segments_.ds_base_;
case Source::ES: return segments_.es_base_;
case Source::CS: return segments_.cs_base_;
case Source::SS: return segments_.ss_base_;
}
}
uint32_t address(InstructionSet::x86::Source segment, uint16_t offset) {
return (segment_base(segment) + offset) & 0xf'ffff;
}
template <AccessType type>
typename InstructionSet::x86::Accessor<uint16_t, type>::type
split_word(uint32_t low_address, uint32_t high_address) {
if constexpr (is_writeable(type)) {
write_back_address_[0] = low_address;
write_back_address_[1] = high_address;
// Prepopulate only if this is a modify.
if constexpr (type == AccessType::ReadModifyWrite) {
write_back_value_ = uint16_t(memory[write_back_address_[0]] | (memory[write_back_address_[1]] << 8));
}
return write_back_value_;
} else {
return uint16_t(memory[low_address] | (memory[high_address] << 8));
}
}
static constexpr uint32_t NoWriteBack = 0; // A low byte address of 0 can't require write-back.
uint32_t write_back_address_[2] = {NoWriteBack, NoWriteBack};
uint16_t write_back_value_;
};
class IO {
public:
IO(PIT &pit, DMA &dma, PPI &ppi, PIC &pic, MDA &mda) :
pit_(pit), dma_(dma), ppi_(ppi), pic_(pic), mda_(mda) {}
template <typename IntT> void out(uint16_t port, IntT value) {
switch(port) {
default:
if constexpr (std::is_same_v<IntT, uint8_t>) {
printf("Unhandled out: %02x to %04x\n", value, port);
} else {
printf("Unhandled out: %04x to %04x\n", value, port);
}
break;
// On the XT the NMI can be masked by setting bit 7 on I/O port 0xA0.
case 0x00a0:
printf("TODO: NMIs %s\n", (value & 0x80) ? "masked" : "unmasked");
break;
case 0x0000: dma_.write<0>(value); break;
case 0x0001: dma_.write<1>(value); break;
case 0x0002: dma_.write<2>(value); break;
case 0x0003: dma_.write<3>(value); break;
case 0x0004: dma_.write<4>(value); break;
case 0x0005: dma_.write<5>(value); break;
case 0x0006: dma_.write<6>(value); break;
case 0x0007: dma_.write<7>(value); break;
case 0x0008: case 0x0009:
case 0x000a: case 0x000b:
case 0x000c: case 0x000f:
printf("TODO: DMA write of %02x at %04x\n", value, port);
break;
case 0x000d: dma_.master_reset(); break;
case 0x000e: dma_.mask_reset(); break;
case 0x0020: pic_.write<0>(value); break;
case 0x0021: pic_.write<1>(value); break;
case 0x0040: pit_.write<0>(uint8_t(value)); break;
case 0x0041: pit_.write<1>(uint8_t(value)); break;
case 0x0042: pit_.write<2>(uint8_t(value)); break;
case 0x0043: pit_.set_mode(uint8_t(value)); break;
case 0x0060: case 0x0061: case 0x0062: case 0x0063:
case 0x0064: case 0x0065: case 0x0066: case 0x0067:
case 0x0068: case 0x0069: case 0x006a: case 0x006b:
case 0x006c: case 0x006d: case 0x006e: case 0x006f:
ppi_.write(port, value);
break;
case 0x0080: case 0x0081: case 0x0082: case 0x0083:
case 0x0084: case 0x0085: case 0x0086: case 0x0087:
case 0x0088: case 0x0089: case 0x008a: case 0x008b:
case 0x008c: case 0x008d: case 0x008e: case 0x008f:
printf("TODO: DMA page write of %02x at %04x\n", value, port);
break;
case 0x03b0: case 0x03b2: case 0x03b4: case 0x03b6:
if constexpr (std::is_same_v<IntT, uint16_t>) {
mda_.write<0>(value);
mda_.write<1>(value >> 8);
} else {
mda_.write<0>(value);
}
break;
case 0x03b1: case 0x03b3: case 0x03b5: case 0x03b7:
if constexpr (std::is_same_v<IntT, uint16_t>) {
mda_.write<1>(value);
mda_.write<0>(value >> 8);
} else {
mda_.write<1>(value);
}
break;
case 0x03b8: /* case 0x03b9: case 0x03ba: case 0x03bb:
case 0x03bc: case 0x03bd: case 0x03be: case 0x03bf: */
mda_.write<8>(value);
break;
case 0x03d0: case 0x03d1: case 0x03d2: case 0x03d3:
case 0x03d4: case 0x03d5: case 0x03d6: case 0x03d7:
case 0x03d8: case 0x03d9: case 0x03da: case 0x03db:
case 0x03dc: case 0x03dd: case 0x03de: case 0x03df:
// Ignore CGA accesses.
break;
case 0x03f0: case 0x03f1: case 0x03f2: case 0x03f3:
case 0x03f4: case 0x03f5: case 0x03f6: case 0x03f7:
printf("TODO: FDC write of %02x at %04x\n", value, port);
break;
case 0x0278: case 0x0279: case 0x027a:
case 0x0378: case 0x0379: case 0x037a:
case 0x03bc: case 0x03bd: case 0x03be:
// Ignore parallel port accesses.
break;
case 0x02e8: case 0x02e9: case 0x02ea: case 0x02eb:
case 0x02ec: case 0x02ed: case 0x02ee: case 0x02ef:
case 0x02f8: case 0x02f9: case 0x02fa: case 0x02fb:
case 0x02fc: case 0x02fd: case 0x02fe: case 0x02ff:
case 0x03e8: case 0x03e9: case 0x03ea: case 0x03eb:
case 0x03ec: case 0x03ed: case 0x03ee: case 0x03ef:
case 0x03f8: case 0x03f9: case 0x03fa: case 0x03fb:
case 0x03fc: case 0x03fd: case 0x03fe: case 0x03ff:
// Ignore serial port accesses.
break;
}
}
template <typename IntT> IntT in([[maybe_unused]] uint16_t port) {
switch(port) {
default:
printf("Unhandled in: %04x\n", port);
break;
case 0x0000: return dma_.read<0>();
case 0x0001: return dma_.read<1>();
case 0x0002: return dma_.read<2>();
case 0x0003: return dma_.read<3>();
case 0x0004: return dma_.read<4>();
case 0x0005: return dma_.read<5>();
case 0x0006: return dma_.read<6>();
case 0x0007: return dma_.read<7>();
case 0x0008: case 0x0009:
case 0x000a: case 0x000b:
case 0x000c: case 0x000f:
printf("TODO: DMA read from %04x\n", port);
break;
case 0x0020: return pic_.read<0>();
case 0x0021: return pic_.read<1>();
case 0x0040: return pit_.read<0>();
case 0x0041: return pit_.read<1>();
case 0x0042: return pit_.read<2>();
case 0x0060: case 0x0061: case 0x0062: case 0x0063:
case 0x0064: case 0x0065: case 0x0066: case 0x0067:
case 0x0068: case 0x0069: case 0x006a: case 0x006b:
case 0x006c: case 0x006d: case 0x006e: case 0x006f:
return ppi_.read(port);
case 0x0201: break; // Ignore game port.
case 0x0278: case 0x0279: case 0x027a:
case 0x0378: case 0x0379: case 0x037a:
case 0x03bc: case 0x03bd: case 0x03be:
// Ignore parallel port accesses.
break;
case 0x03f0: case 0x03f1: case 0x03f2: case 0x03f3:
case 0x03f4: case 0x03f5: case 0x03f6: case 0x03f7:
printf("TODO: FDC read from %04x\n", port);
break;
case 0x02e8: case 0x02e9: case 0x02ea: case 0x02eb:
case 0x02ec: case 0x02ed: case 0x02ee: case 0x02ef:
case 0x02f8: case 0x02f9: case 0x02fa: case 0x02fb:
case 0x02fc: case 0x02fd: case 0x02fe: case 0x02ff:
case 0x03e8: case 0x03e9: case 0x03ea: case 0x03eb:
case 0x03ec: case 0x03ed: case 0x03ee: case 0x03ef:
case 0x03f8: case 0x03f9: case 0x03fa: case 0x03fb:
case 0x03fc: case 0x03fd: case 0x03fe: case 0x03ff:
// Ignore serial port accesses.
break;
}
return IntT(~0);
}
private:
PIT &pit_;
DMA &dma_;
PPI &ppi_;
PIC &pic_;
MDA &mda_;
};
class FlowController {
public:
FlowController(Registers &registers, Segments &segments) :
registers_(registers), segments_(segments) {}
// Requirements for perform.
void jump(uint16_t address) {
registers_.ip() = address;
}
void jump(uint16_t segment, uint16_t address) {
registers_.cs() = segment;
segments_.did_update(Segments::Source::CS);
registers_.ip() = address;
}
void halt() {}
void wait() {}
void repeat_last() {
should_repeat_ = true;
}
// Other actions.
void begin_instruction() {
should_repeat_ = false;
}
bool should_repeat() const {
return should_repeat_;
}
private:
Registers &registers_;
Segments &segments_;
bool should_repeat_ = false;
};
class ConcreteMachine:
public Machine,
public MachineTypes::TimedMachine,
public MachineTypes::AudioProducer,
public MachineTypes::ScanProducer
{
public:
ConcreteMachine(
[[maybe_unused]] const Analyser::Static::Target &target,
const ROMMachine::ROMFetcher &rom_fetcher
) :
keyboard_(pic_),
pit_observer_(pic_, speaker_),
ppi_handler_(speaker_, keyboard_),
pit_(pit_observer_),
ppi_(ppi_handler_),
context(pit_, dma_, ppi_, pic_, mda_)
{
// Use clock rate as a MIPS count; keeping it as a multiple or divisor of the PIT frequency is easy.
static constexpr int pit_frequency = 1'193'182;
set_clock_rate(double(pit_frequency));
speaker_.speaker.set_input_rate(double(pit_frequency));
// Fetch the BIOS. [8088 only, for now]
const auto bios = ROM::Name::PCCompatibleGLaBIOS;
const auto font = ROM::Name::PCCompatibleMDAFont;
ROM::Request request = ROM::Request(bios) && ROM::Request(font);
auto roms = rom_fetcher(request);
if(!request.validate(roms)) {
throw ROMMachine::Error::MissingROMs;
}
const auto &bios_contents = roms.find(bios)->second;
context.memory.install(0x10'0000 - bios_contents.size(), bios_contents.data(), bios_contents.size());
// Give the MDA something to read from.
const auto &font_contents = roms.find(font)->second;
mda_.set_source(context.memory.at(0xb'0000), font_contents);
}
~ConcreteMachine() {
speaker_.queue.flush();
}
// MARK: - TimedMachine.
// bool log = false;
// std::string previous;
void run_for(const Cycles duration) override {
const auto pit_ticks = duration.as_integral();
cpu_divisor_ += pit_ticks;
int ticks = cpu_divisor_ / 3;
cpu_divisor_ %= 3;
while(ticks--) {
//
// First draft: all hardware runs in lockstep, as a multiple or divisor of the PIT frequency.
//
//
// Advance the PIT and audio.
//
pit_.run_for(1);
++speaker_.cycles_since_update;
pit_.run_for(1);
++speaker_.cycles_since_update;
pit_.run_for(1);
++speaker_.cycles_since_update;
//
// Advance CRTC at a more approximate rate.
//
mda_.run_for(Cycles(3));
//
// Perform one CPU instruction every three PIT cycles.
// i.e. CPU instruction rate is 1/3 * ~1.19Mhz ~= 0.4 MIPS.
//
keyboard_.run_for(Cycles(1));
// Query for interrupts and apply if pending.
if(pic_.pending() && context.flags.flag<InstructionSet::x86::Flag::Interrupt>()) {
// Regress the IP if a REP is in-progress so as to resume it later.
if(context.flow_controller.should_repeat()) {
context.registers.ip() = decoded_ip_;
context.flow_controller.begin_instruction();
}
// Signal interrupt.
InstructionSet::x86::interrupt(
pic_.acknowledge(),
context
);
}
// Get the next thing to execute.
if(!context.flow_controller.should_repeat()) {
// Decode from the current IP.
decoded_ip_ = context.registers.ip();
const auto remainder = context.memory.next_code();
decoded = decoder.decode(remainder.first, remainder.second);
// If that didn't yield a whole instruction then the end of memory must have been hit;
// continue from the beginning.
if(decoded.first <= 0) {
const auto all = context.memory.all();
decoded = decoder.decode(all.first, all.second);
}
context.registers.ip() += decoded.first;
// log |= decoded.second.operation() == InstructionSet::x86::Operation::STI;
} else {
context.flow_controller.begin_instruction();
}
// if(log) {
// const auto next = to_string(decoded, InstructionSet::x86::Model::i8086);
// if(next != previous) {
// std::cout << next << std::endl;
// previous = next;
// }
// }
// Execute it.
InstructionSet::x86::perform(
decoded.second,
context
);
}
}
// MARK: - ScanProducer.
void set_scan_target(Outputs::Display::ScanTarget *scan_target) override {
mda_.set_scan_target(scan_target);
}
Outputs::Display::ScanStatus get_scaled_scan_status() const override {
return mda_.get_scaled_scan_status();
}
// MARK: - AudioProducer.
Outputs::Speaker::Speaker *get_speaker() override {
return &speaker_.speaker;
}
void flush_output(int outputs) final {
if(outputs & Output::Audio) {
speaker_.update();
speaker_.queue.perform();
}
}
private:
PIC pic_;
DMA dma_;
PCSpeaker speaker_;
MDA mda_;
KeyboardController keyboard_;
PITObserver pit_observer_;
i8255PortHandler ppi_handler_;
PIT pit_;
PPI ppi_;
struct Context {
Context(PIT &pit, DMA &dma, PPI &ppi, PIC &pic, MDA &mda) :
segments(registers),
memory(registers, segments),
flow_controller(registers, segments),
io(pit, dma, ppi, pic, mda)
{
reset();
}
void reset() {
registers.reset();
segments.reset();
}
InstructionSet::x86::Flags flags;
Registers registers;
Segments segments;
Memory memory;
FlowController flow_controller;
IO io;
static constexpr auto model = InstructionSet::x86::Model::i8086;
} context;
// TODO: eliminate use of Decoder8086 and Decoder8086 in gneral in favour of the templated version, as soon
// as whatever error is preventing GCC from picking up Decoder's explicit instantiations becomes apparent.
InstructionSet::x86::Decoder8086 decoder;
// InstructionSet::x86::Decoder<InstructionSet::x86::Model::i8086> decoder;
uint16_t decoded_ip_ = 0;
std::pair<int, InstructionSet::x86::Instruction<false>> decoded;
int cpu_divisor_ = 0;
};
}
using namespace PCCompatible;
// See header; constructs and returns an instance of the Amstrad CPC.
Machine *Machine::PCCompatible(const Analyser::Static::Target *target, const ROMMachine::ROMFetcher &rom_fetcher) {
return new PCCompatible::ConcreteMachine(*target, rom_fetcher);
}
Machine::~Machine() {}