1
0
mirror of https://github.com/TomHarte/CLK.git synced 2024-11-26 08:49:37 +00:00
CLK/Machines/Apple/AppleII/Video.hpp
2020-10-31 20:39:32 -04:00

466 lines
16 KiB
C++

//
// Video.hpp
// Clock Signal
//
// Created by Thomas Harte on 14/04/2018.
// Copyright 2018 Thomas Harte. All rights reserved.
//
#ifndef Apple_II_Video_hpp
#define Apple_II_Video_hpp
#include "../../../Outputs/CRT/CRT.hpp"
#include "../../../ClockReceiver/ClockReceiver.hpp"
#include "../../../ClockReceiver/DeferredQueue.hpp"
#include "VideoSwitches.hpp"
#include <array>
#include <vector>
namespace Apple {
namespace II {
namespace Video {
class BusHandler {
public:
/*!
Requests fetching of the @c count bytes starting from @c address.
The handler should write the values from base memory to @c base_target, and those
from auxiliary memory to @c auxiliary_target. If the machine has no axiliary memory,
it needn't write anything to auxiliary_target.
*/
void perform_read([[maybe_unused]] uint16_t address, [[maybe_unused]] size_t count, [[maybe_unused]] uint8_t *base_target, [[maybe_unused]] uint8_t *auxiliary_target) {
}
};
class VideoBase: public VideoSwitches<Cycles> {
public:
VideoBase(bool is_iie, std::function<void(Cycles)> &&target);
/// Sets the scan target.
void set_scan_target(Outputs::Display::ScanTarget *scan_target);
/// Gets the current scan status.
Outputs::Display::ScanStatus get_scaled_scan_status() const;
/// Sets the type of output.
void set_display_type(Outputs::Display::DisplayType);
/// Gets the type of output.
Outputs::Display::DisplayType get_display_type() const;
// Setup for text mode.
void set_character_rom(const std::vector<uint8_t> &);
protected:
Outputs::CRT::CRT crt_;
// State affecting output video stream generation.
uint8_t *pixel_pointer_ = nullptr;
// State affecting logical state.
int row_ = 0, column_ = 0, flash_ = 0;
uint8_t flash_mask() {
return uint8_t((flash_ / flash_length) * 0xff);
}
bool alternative_character_set_ = false;
void did_set_annunciator_3(bool) override;
void did_set_alternative_character_set(bool) override;
// Graphics carry is the final level output in a fetch window;
// it carries on into the next if it's high resolution with
// the delay bit set.
mutable uint8_t graphics_carry_ = 0;
bool was_double_ = false;
uint8_t high_resolution_mask_ = 0xff;
// This holds a copy of the character ROM. The regular character
// set is assumed to be in the first 64*8 bytes; the alternative
// is in the 128*8 bytes after that.
std::vector<uint8_t> character_rom_;
// Memory is fetched ahead of time into this array;
// this permits the correct delay between fetching
// without having to worry about a rolling buffer.
std::array<uint8_t, 40> base_stream_;
std::array<uint8_t, 40> auxiliary_stream_;
const bool is_iie_ = false;
static constexpr int flash_length = 8406;
// Describes the current text mode mapping from in-memory character index
// to output character.
struct CharacterMapping {
uint8_t address_mask;
uint8_t xor_mask;
};
CharacterMapping character_zones[4];
/*!
Outputs 40-column text to @c target, using @c length bytes from @c source.
*/
void output_text(uint8_t *target, const uint8_t *source, size_t length, size_t pixel_row) const;
/*!
Outputs 80-column text to @c target, drawing @c length columns from @c source and @c auxiliary_source.
*/
void output_double_text(uint8_t *target, const uint8_t *source, const uint8_t *auxiliary_source, size_t length, size_t pixel_row) const;
/*!
Outputs 40-column low-resolution graphics to @c target, drawing @c length columns from @c source.
*/
void output_low_resolution(uint8_t *target, const uint8_t *source, size_t length, int column, int row) const;
/*!
Outputs 80-column low-resolution graphics to @c target, drawing @c length columns from @c source and @c auxiliary_source.
*/
void output_double_low_resolution(uint8_t *target, const uint8_t *source, const uint8_t *auxiliary_source, size_t length, int column, int row) const;
/*!
Outputs 40-column high-resolution graphics to @c target, drawing @c length columns from @c source.
*/
void output_high_resolution(uint8_t *target, const uint8_t *source, size_t length) const;
/*!
Outputs 80-column double-high-resolution graphics to @c target, drawing @c length columns from @c source.
*/
void output_double_high_resolution(uint8_t *target, const uint8_t *source, const uint8_t *auxiliary_source, size_t length) const;
/*!
Outputs 40-column "fat low resolution" graphics to @c target, drawing @c length columns from @c source.
Fat low-resolution mode is like regular low-resolution mode except that data is shifted out on the 7M
clock rather than the 14M.
*/
void output_fat_low_resolution(uint8_t *target, const uint8_t *source, size_t length, int column, int row) const;
};
template <class BusHandler, bool is_iie> class Video: public VideoBase {
public:
/// Constructs an instance of the video feed; a CRT is also created.
Video(BusHandler &bus_handler) :
VideoBase(is_iie, [this] (Cycles cycles) { advance(cycles); }),
bus_handler_(bus_handler) {}
/*!
Obtains the last value the video read prior to time now+offset.
*/
uint8_t get_last_read_value(Cycles offset) {
// Rules of generation:
// (1) a complete sixty-five-cycle scan line consists of sixty-five consecutive bytes of
// display buffer memory that starts twenty-five bytes prior to the actual data to be displayed.
// (2) During VBL the data acts just as if it were starting a whole new frame from the beginning, but
// it never finishes this pseudo-frame. After getting one third of the way through the frame (to
// scan line $3F), it suddenly repeats the previous six scan lines ($3A through $3F) before aborting
// to begin the next true frame.
//
// Source: Have an Apple Split by Bob Bishop; http://rich12345.tripod.com/aiivideo/softalk.html
// Determine column at offset.
int mapped_column = column_ + int(offset.as_integral());
// Map that backwards from the internal pixels-at-start generation to pixels-at-end
// (so what was column 0 is now column 25).
mapped_column += 25;
// Apply carry into the row counter.
int mapped_row = row_ + (mapped_column / 65);
mapped_column %= 65;
mapped_row %= 262;
// Apple out-of-bounds row logic.
if(mapped_row >= 256) {
mapped_row = 0x3a + (mapped_row&255);
} else {
mapped_row %= 192;
}
// Calculate the address and return the value.
uint16_t read_address = uint16_t(get_row_address(mapped_row) + mapped_column - 25);
uint8_t value, aux_value;
bus_handler_.perform_read(read_address, 1, &value, &aux_value);
return value;
}
/*!
@returns @c true if the display will be within vertical blank at now + @c offset; @c false otherwise.
*/
bool get_is_vertical_blank(Cycles offset) {
// Map that backwards from the internal pixels-at-start generation to pixels-at-end
// (so what was column 0 is now column 25).
int mapped_column = column_ + int(offset.as_integral());
// Map that backwards from the internal pixels-at-start generation to pixels-at-end
// (so what was column 0 is now column 25).
mapped_column += 25;
// Apply carry into the row counter and test it for location.
int mapped_row = row_ + (mapped_column / 65);
return (mapped_row % 262) >= 192;
}
private:
/*!
Advances time by @c cycles; expects to be fed by the CPU clock.
Implicitly adds an extra half a colour clock at the end of
line.
*/
void advance(Cycles cycles) {
/*
Addressing scheme used throughout is that column 0 is the first column with pixels in it;
row 0 is the first row with pixels in it.
A frame is oriented around 65 cycles across, 262 lines down.
*/
constexpr int first_sync_line = 220; // A complete guess. Information needed.
constexpr int first_sync_column = 49; // Also a guess.
constexpr int sync_length = 4; // One of the two likely candidates.
int int_cycles = int(cycles.as_integral());
while(int_cycles) {
const int cycles_this_line = std::min(65 - column_, int_cycles);
const int ending_column = column_ + cycles_this_line;
const bool is_vertical_sync_line = (row_ >= first_sync_line && row_ < first_sync_line + 3);
if(is_vertical_sync_line) {
// In effect apply an XOR to HSYNC and VSYNC flags in order to include equalising
// pulses (and hencce keep hsync approximately where it should be during vsync).
const int blank_start = std::max(first_sync_column - sync_length, column_);
const int blank_end = std::min(first_sync_column, ending_column);
if(blank_end > blank_start) {
if(blank_start > column_) {
crt_.output_sync((blank_start - column_) * 14);
}
crt_.output_blank((blank_end - blank_start) * 14);
if(blank_end < ending_column) {
crt_.output_sync((ending_column - blank_end) * 14);
}
} else {
crt_.output_sync(cycles_this_line * 14);
}
} else {
const GraphicsMode line_mode = graphics_mode(row_);
// Determine whether there's any fetching to do. Fetching occurs during the first
// 40 columns of rows prior to 192.
if(row_ < 192 && column_ < 40) {
const int character_row = row_ >> 3;
const uint16_t row_address = uint16_t((character_row >> 3) * 40 + ((character_row&7) << 7));
// Grab the memory contents that'll be needed momentarily.
const int fetch_end = std::min(40, ending_column);
uint16_t fetch_address;
switch(line_mode) {
default:
case GraphicsMode::Text:
case GraphicsMode::DoubleText:
case GraphicsMode::LowRes:
case GraphicsMode::FatLowRes:
case GraphicsMode::DoubleLowRes: {
const uint16_t text_address = uint16_t(((video_page()+1) * 0x400) + row_address);
fetch_address = uint16_t(text_address + column_);
} break;
case GraphicsMode::HighRes:
case GraphicsMode::DoubleHighRes:
fetch_address = uint16_t(((video_page()+1) * 0x2000) + row_address + ((row_&7) << 10) + column_);
break;
}
bus_handler_.perform_read(
fetch_address,
size_t(fetch_end - column_),
&base_stream_[size_t(column_)],
&auxiliary_stream_[size_t(column_)]);
}
if(row_ < 192) {
// The pixel area is the first 40.5 columns; base contents
// remain where they would naturally be but auxiliary
// graphics appear to the left of that.
if(!column_) {
pixel_pointer_ = crt_.begin_data(568);
graphics_carry_ = 0;
was_double_ = true;
}
if(column_ < 40) {
const int pixel_start = std::max(0, column_);
const int pixel_end = std::min(40, ending_column);
const int pixel_row = row_ & 7;
const bool is_double = is_double_mode(line_mode);
if(!is_double && was_double_ && pixel_pointer_) {
pixel_pointer_[pixel_start*14 + 0] =
pixel_pointer_[pixel_start*14 + 1] =
pixel_pointer_[pixel_start*14 + 2] =
pixel_pointer_[pixel_start*14 + 3] =
pixel_pointer_[pixel_start*14 + 4] =
pixel_pointer_[pixel_start*14 + 5] =
pixel_pointer_[pixel_start*14 + 6] = 0;
}
was_double_ = is_double;
if(pixel_pointer_) {
switch(line_mode) {
case GraphicsMode::Text:
output_text(
&pixel_pointer_[pixel_start * 14 + 7],
&base_stream_[size_t(pixel_start)],
size_t(pixel_end - pixel_start),
size_t(pixel_row));
break;
case GraphicsMode::DoubleText:
output_double_text(
&pixel_pointer_[pixel_start * 14],
&base_stream_[size_t(pixel_start)],
&auxiliary_stream_[size_t(pixel_start)],
size_t(pixel_end - pixel_start),
size_t(pixel_row));
break;
case GraphicsMode::LowRes:
output_low_resolution(
&pixel_pointer_[pixel_start * 14 + 7],
&base_stream_[size_t(pixel_start)],
size_t(pixel_end - pixel_start),
pixel_start,
pixel_row);
break;
case GraphicsMode::FatLowRes:
output_fat_low_resolution(
&pixel_pointer_[pixel_start * 14 + 7],
&base_stream_[size_t(pixel_start)],
size_t(pixel_end - pixel_start),
pixel_start,
pixel_row);
break;
case GraphicsMode::DoubleLowRes:
output_double_low_resolution(
&pixel_pointer_[pixel_start * 14],
&base_stream_[size_t(pixel_start)],
&auxiliary_stream_[size_t(pixel_start)],
size_t(pixel_end - pixel_start),
pixel_start,
pixel_row);
break;
case GraphicsMode::HighRes:
output_high_resolution(
&pixel_pointer_[pixel_start * 14 + 7],
&base_stream_[size_t(pixel_start)],
size_t(pixel_end - pixel_start));
break;
case GraphicsMode::DoubleHighRes:
output_double_high_resolution(
&pixel_pointer_[pixel_start * 14],
&base_stream_[size_t(pixel_start)],
&auxiliary_stream_[size_t(pixel_start)],
size_t(pixel_end - pixel_start));
break;
default: break;
}
}
if(pixel_end == 40) {
if(pixel_pointer_) {
if(was_double_) {
pixel_pointer_[560] = pixel_pointer_[561] = pixel_pointer_[562] = pixel_pointer_[563] =
pixel_pointer_[564] = pixel_pointer_[565] = pixel_pointer_[566] = pixel_pointer_[567] = 0;
} else {
if(line_mode == GraphicsMode::HighRes && base_stream_[39]&0x80)
pixel_pointer_[567] = graphics_carry_;
else
pixel_pointer_[567] = 0;
}
}
crt_.output_data(568, 568);
pixel_pointer_ = nullptr;
}
}
} else {
if(column_ < 40 && ending_column >= 40) {
crt_.output_blank(568);
}
}
/*
The left border, sync, right border pattern doesn't depend on whether
there were pixels this row and is output as soon as it is known.
*/
if(column_ < first_sync_column && ending_column >= first_sync_column) {
crt_.output_blank(first_sync_column*14 - 568);
}
if(column_ < (first_sync_column + sync_length) && ending_column >= (first_sync_column + sync_length)) {
crt_.output_sync(sync_length*14);
}
int second_blank_start;
if(!is_text_mode(graphics_mode(row_+1))) {
const int colour_burst_start = std::max(first_sync_column + sync_length + 1, column_);
const int colour_burst_end = std::min(first_sync_column + sync_length + 4, ending_column);
if(colour_burst_end > colour_burst_start) {
// UGLY HACK AHOY!
// The OpenGL scan target introduces a phase error of 1/8th of a wave. The Metal one does not.
// Supply the real phase value if this is an Apple build.
// TODO: eliminate UGLY HACK.
#ifdef __APPLE__
constexpr int phase = 224;
#else
constexpr int phase = 0;
#endif
crt_.output_colour_burst((colour_burst_end - colour_burst_start) * 14, phase);
}
second_blank_start = std::max(first_sync_column + sync_length + 3, column_);
} else {
second_blank_start = std::max(first_sync_column + sync_length, column_);
}
if(ending_column > second_blank_start) {
crt_.output_blank((ending_column - second_blank_start) * 14);
}
}
int_cycles -= cycles_this_line;
column_ = (column_ + cycles_this_line) % 65;
if(!column_) {
row_ = (row_ + 1) % 262;
flash_ = (flash_ + 1) % (2 * flash_length);
if(!alternative_character_set_) {
character_zones[1].xor_mask = flash_mask();
}
// Add an extra half a colour cycle of blank; this isn't counted in the run_for
// count explicitly but is promised. If this is a vertical sync line, output sync
// instead of blank, taking that to be the default level.
if(is_vertical_sync_line) {
crt_.output_sync(2);
} else {
crt_.output_blank(2);
}
}
}
}
BusHandler &bus_handler_;
};
}
}
}
#endif /* Apple_II_Video_hpp */