1
0
mirror of https://github.com/TomHarte/CLK.git synced 2024-11-26 23:52:26 +00:00
CLK/Storage/Disk/Encodings/MFM.cpp

478 lines
13 KiB
C++

//
// MFM.cpp
// Clock Signal
//
// Created by Thomas Harte on 18/09/2016.
// Copyright © 2016 Thomas Harte. All rights reserved.
//
#include "MFM.hpp"
#include "../PCMTrack.hpp"
#include "../../../NumberTheory/CRC.hpp"
using namespace Storage::Encodings::MFM;
class MFMEncoder: public Encoder {
public:
MFMEncoder(std::vector<uint8_t> &target) : Encoder(target) {}
void add_byte(uint8_t input) {
crc_generator_.add(input);
uint16_t spread_value =
(uint16_t)(
((input & 0x01) << 0) |
((input & 0x02) << 1) |
((input & 0x04) << 2) |
((input & 0x08) << 3) |
((input & 0x10) << 4) |
((input & 0x20) << 5) |
((input & 0x40) << 6) |
((input & 0x80) << 7)
);
uint16_t or_bits = (uint16_t)((spread_value << 1) | (spread_value >> 1) | (last_output_ << 15));
uint16_t output = spread_value | ((~or_bits) & 0xaaaa);
output_short(output);
}
void add_index_address_mark() {
for(int c = 0; c < 3; c++) output_short(MFMIndexSync);
add_byte(IndexAddressByte);
}
void add_ID_address_mark() {
output_sync();
add_byte(IDAddressByte);
}
void add_data_address_mark() {
output_sync();
add_byte(DataAddressByte);
}
void add_deleted_data_address_mark() {
output_sync();
add_byte(DeletedDataAddressByte);
}
private:
uint16_t last_output_;
void output_short(uint16_t value) {
last_output_ = value;
Encoder::output_short(value);
}
void output_sync() {
for(int c = 0; c < 3; c++) output_short(MFMSync);
crc_generator_.set_value(MFMPostSyncCRCValue);
}
};
class FMEncoder: public Encoder {
// encodes each 16-bit part as clock, data, clock, data [...]
public:
FMEncoder(std::vector<uint8_t> &target) : Encoder(target) {}
void add_byte(uint8_t input) {
crc_generator_.add(input);
output_short(
(uint16_t)(
((input & 0x01) << 0) |
((input & 0x02) << 1) |
((input & 0x04) << 2) |
((input & 0x08) << 3) |
((input & 0x10) << 4) |
((input & 0x20) << 5) |
((input & 0x40) << 6) |
((input & 0x80) << 7) |
0xaaaa
));
}
void add_index_address_mark() {
crc_generator_.reset();
crc_generator_.add(IndexAddressByte);
output_short(FMIndexAddressMark);
}
void add_ID_address_mark() {
crc_generator_.reset();
crc_generator_.add(IDAddressByte);
output_short(FMIDAddressMark);
}
void add_data_address_mark() {
crc_generator_.reset();
crc_generator_.add(DataAddressByte);
output_short(FMDataAddressMark);
}
void add_deleted_data_address_mark() {
crc_generator_.reset();
crc_generator_.add(DeletedDataAddressByte);
output_short(FMDeletedDataAddressMark);
}
};
static uint8_t logarithmic_size_for_size(size_t size) {
switch(size) {
default: return 0;
case 256: return 1;
case 512: return 2;
case 1024: return 3;
case 2048: return 4;
case 4196: return 5;
}
}
template<class T> std::shared_ptr<Storage::Disk::Track>
GetTrackWithSectors(
const std::vector<Sector> &sectors,
size_t post_index_address_mark_bytes, uint8_t post_index_address_mark_value,
size_t pre_address_mark_bytes, size_t post_address_mark_bytes,
size_t pre_data_mark_bytes, size_t post_data_bytes,
size_t inter_sector_gap,
size_t expected_track_bytes) {
Storage::Disk::PCMSegment segment;
segment.data.reserve(expected_track_bytes);
T shifter(segment.data);
// output the index mark
shifter.add_index_address_mark();
// add the post-index mark
for(size_t c = 0; c < post_index_address_mark_bytes; c++) shifter.add_byte(post_index_address_mark_value);
// add sectors
for(const Sector &sector : sectors) {
// gap
for(size_t c = 0; c < pre_address_mark_bytes; c++) shifter.add_byte(0x00);
// sector header
shifter.add_ID_address_mark();
shifter.add_byte(sector.track);
shifter.add_byte(sector.side);
shifter.add_byte(sector.sector);
uint8_t size = logarithmic_size_for_size(sector.data.size());
shifter.add_byte(size);
shifter.add_crc();
// gap
for(size_t c = 0; c < post_address_mark_bytes; c++) shifter.add_byte(0x4e);
for(size_t c = 0; c < pre_data_mark_bytes; c++) shifter.add_byte(0x00);
// data
shifter.add_data_address_mark();
for(size_t c = 0; c < sector.data.size(); c++)
{
shifter.add_byte(sector.data[c]);
}
shifter.add_crc();
// gap
for(size_t c = 0; c < post_data_bytes; c++) shifter.add_byte(0x00);
for(size_t c = 0; c < inter_sector_gap; c++) shifter.add_byte(0x4e);
}
while(segment.data.size() < expected_track_bytes) shifter.add_byte(0x00);
segment.number_of_bits = (unsigned int)(segment.data.size() * 8);
return std::shared_ptr<Storage::Disk::Track>(new Storage::Disk::PCMTrack(std::move(segment)));
}
Encoder::Encoder(std::vector<uint8_t> &target) :
crc_generator_(0x1021, 0xffff),
target_(target) {}
void Encoder::output_short(uint16_t value) {
target_.push_back(value >> 8);
target_.push_back(value & 0xff);
}
void Encoder::add_crc() {
uint16_t crc_value = crc_generator_.get_value();
add_byte(crc_value >> 8);
add_byte(crc_value & 0xff);
}
std::shared_ptr<Storage::Disk::Track> Storage::Encodings::MFM::GetFMTrackWithSectors(const std::vector<Sector> &sectors) {
return GetTrackWithSectors<FMEncoder>(
sectors,
16, 0x00,
6, 0,
17, 14,
0,
6250); // i.e. 250kbps (including clocks) * 60 = 15000kpm, at 300 rpm => 50 kbits/rotation => 6250 bytes/rotation
}
std::shared_ptr<Storage::Disk::Track> Storage::Encodings::MFM::GetMFMTrackWithSectors(const std::vector<Sector> &sectors) {
return GetTrackWithSectors<MFMEncoder>(
sectors,
50, 0x4e,
12, 22,
12, 18,
32,
12500); // unintelligently: double the single-density bytes/rotation (or: 500kps @ 300 rpm)
}
std::unique_ptr<Encoder> Storage::Encodings::MFM::GetMFMEncoder(std::vector<uint8_t> &target) {
return std::unique_ptr<Encoder>(new MFMEncoder(target));
}
std::unique_ptr<Encoder> Storage::Encodings::MFM::GetFMEncoder(std::vector<uint8_t> &target) {
return std::unique_ptr<Encoder>(new FMEncoder(target));
}
#pragma mark - Parser
Parser::Parser(bool is_mfm) :
Storage::Disk::Controller(4000000, 1, 300),
crc_generator_(0x1021, 0xffff),
shift_register_(0), track_(0), is_mfm_(is_mfm) {
Storage::Time bit_length;
bit_length.length = 1;
bit_length.clock_rate = is_mfm ? 500000 : 250000; // i.e. 250 kbps (including clocks)
set_expected_bit_length(bit_length);
drive.reset(new Storage::Disk::Drive);
set_drive(drive);
set_motor_on(true);
}
Parser::Parser(bool is_mfm, const std::shared_ptr<Storage::Disk::Disk> &disk) :
Parser(is_mfm) {
drive->set_disk(disk);
}
Parser::Parser(bool is_mfm, const std::shared_ptr<Storage::Disk::Track> &track) :
Parser(is_mfm) {
drive->set_disk_with_track(track);
}
void Parser::seek_to_track(uint8_t track) {
int difference = (int)track - (int)track_;
track_ = track;
if(difference) {
int direction = difference < 0 ? -1 : 1;
difference *= direction;
for(int c = 0; c < difference; c++) step(direction);
}
}
std::shared_ptr<Sector> Parser::get_sector(uint8_t track, uint8_t sector) {
seek_to_track(track);
return get_sector(sector);
}
std::vector<uint8_t> Parser::get_track(uint8_t track) {
seek_to_track(track);
return get_track();
}
void Parser::process_input_bit(int value, unsigned int cycles_since_index_hole) {
shift_register_ = ((shift_register_ << 1) | (unsigned int)value) & 0xffff;
bit_count_++;
}
void Parser::process_index_hole() {
index_count_++;
}
uint8_t Parser::get_byte_for_shift_value(uint16_t value) {
return (uint8_t)(
((value&0x0001) >> 0) |
((value&0x0004) >> 1) |
((value&0x0010) >> 2) |
((value&0x0040) >> 3) |
((value&0x0100) >> 4) |
((value&0x0400) >> 5) |
((value&0x1000) >> 6) |
((value&0x4000) >> 7));
}
uint8_t Parser::get_next_byte() {
bit_count_ = 0;
while(bit_count_ < 16) run_for(Cycles(1));
uint8_t byte = get_byte_for_shift_value((uint16_t)shift_register_);
crc_generator_.add(byte);
return byte;
}
std::vector<uint8_t> Parser::get_track() {
std::vector<uint8_t> result;
int distance_until_permissible_sync = 0;
uint8_t last_id[6];
int last_id_pointer = 0;
bool next_is_type = false;
// align to the next index hole
index_count_ = 0;
while(!index_count_) run_for(Cycles(1));
// capture every other bit until the next index hole
index_count_ = 0;
while(1) {
// wait until either another bit or the index hole arrives
bit_count_ = 0;
bool found_sync = false;
while(!index_count_ && !found_sync && bit_count_ < 16) {
int previous_bit_count = bit_count_;
run_for(Cycles(1));
if(!distance_until_permissible_sync && bit_count_ != previous_bit_count) {
uint16_t low_shift_register = (shift_register_&0xffff);
if(is_mfm_) {
found_sync = (low_shift_register == MFMIndexSync) || (low_shift_register == MFMSync);
} else {
found_sync =
(low_shift_register == FMIndexAddressMark) ||
(low_shift_register == FMIDAddressMark) ||
(low_shift_register == FMDataAddressMark) ||
(low_shift_register == FMDeletedDataAddressMark);
}
}
}
// if that was the index hole then finish
if(index_count_) {
if(bit_count_) result.push_back(get_byte_for_shift_value((uint16_t)(shift_register_ << (16 - bit_count_))));
break;
}
// store whatever the current byte is
uint8_t byte_value = get_byte_for_shift_value((uint16_t)shift_register_);
result.push_back(byte_value);
if(last_id_pointer < 6) last_id[last_id_pointer++] = byte_value;
// if no syncs are permissible here, decrement the waiting period and perform no further contemplation
bool found_id = false, found_data = false;
if(distance_until_permissible_sync) {
distance_until_permissible_sync--;
} else {
if(found_sync) {
if(is_mfm_) {
next_is_type = true;
} else {
switch(shift_register_&0xffff) {
case FMIDAddressMark: found_id = true; break;
case FMDataAddressMark:
case FMDeletedDataAddressMark: found_data = true; break;
}
}
} else if(next_is_type) {
switch(byte_value) {
case IDAddressByte: found_id = true; break;
case DataAddressByte:
case DeletedDataAddressByte: found_data = true; break;
}
}
}
if(found_id) {
distance_until_permissible_sync = 6;
last_id_pointer = 0;
}
if(found_data) {
distance_until_permissible_sync = 128 << last_id[3];
}
}
return result;
}
std::shared_ptr<Sector> Parser::get_next_sector()
{
std::shared_ptr<Sector> sector(new Sector);
index_count_ = 0;
while(index_count_ < 2) {
// look for an ID address mark
bool id_found = false;
while(!id_found) {
run_for(Cycles(1));
if(is_mfm_) {
while(shift_register_ == MFMSync) {
uint8_t mark = get_next_byte();
if(mark == IDAddressByte) {
crc_generator_.set_value(MFMPostSyncCRCValue);
id_found = true;
break;
}
}
} else {
if(shift_register_ == FMIDAddressMark) {
crc_generator_.reset();
id_found = true;
}
}
if(index_count_ >= 2) return nullptr;
}
crc_generator_.add(IDAddressByte);
sector->track = get_next_byte();
sector->side = get_next_byte();
sector->sector = get_next_byte();
uint8_t size = get_next_byte();
uint16_t header_crc = crc_generator_.get_value();
if((header_crc >> 8) != get_next_byte()) continue;
if((header_crc & 0xff) != get_next_byte()) continue;
// look for data mark
bool data_found = false;
while(!data_found) {
run_for(Cycles(1));
if(is_mfm_) {
while(shift_register_ == MFMSync) {
uint8_t mark = get_next_byte();
if(mark == DataAddressByte) {
crc_generator_.set_value(MFMPostSyncCRCValue);
data_found = true;
break;
}
if(mark == IDAddressByte) return nullptr;
}
} else {
if(shift_register_ == FMDataAddressMark) {
crc_generator_.reset();
data_found = true;
}
if(shift_register_ == FMIDAddressMark) return nullptr;
}
if(index_count_ >= 2) return nullptr;
}
crc_generator_.add(DataAddressByte);
size_t data_size = (size_t)(128 << size);
sector->data.reserve(data_size);
for(size_t c = 0; c < data_size; c++) {
sector->data.push_back(get_next_byte());
}
uint16_t data_crc = crc_generator_.get_value();
if((data_crc >> 8) != get_next_byte()) continue;
if((data_crc & 0xff) != get_next_byte()) continue;
return sector;
}
return nullptr;
}
std::shared_ptr<Sector> Parser::get_sector(uint8_t sector) {
std::shared_ptr<Sector> first_sector;
index_count_ = 0;
while(!first_sector && index_count_ < 2) first_sector = get_next_sector();
if(!first_sector) return first_sector;
if(first_sector->sector == sector) return first_sector;
while(1) {
std::shared_ptr<Sector> next_sector = get_next_sector();
if(!next_sector) continue;
if(next_sector->sector == first_sector->sector) return nullptr;
if(next_sector->sector == sector) return next_sector;
}
}