mirror of
https://github.com/TomHarte/CLK.git
synced 2025-01-14 13:33:42 +00:00
2232 lines
82 KiB
C++
2232 lines
82 KiB
C++
//
|
|
// 68000Implementation.hpp
|
|
// Clock Signal
|
|
//
|
|
// Created by Thomas Harte on 10/03/2019.
|
|
// Copyright © 2019 Thomas Harte. All rights reserved.
|
|
//
|
|
|
|
#define get_ccr() \
|
|
( \
|
|
(carry_flag_ ? 0x0001 : 0x0000) | \
|
|
(overflow_flag_ ? 0x0002 : 0x0000) | \
|
|
(zero_result_ ? 0x0000 : 0x0004) | \
|
|
(negative_flag_ ? 0x0008 : 0x0000) | \
|
|
(extend_flag_ ? 0x0010 : 0x0000) \
|
|
)
|
|
|
|
#define get_status() \
|
|
uint16_t( \
|
|
get_ccr() | \
|
|
(interrupt_level_ << 8) | \
|
|
(trace_flag_ ? 0x8000 : 0x0000) | \
|
|
(is_supervisor_ << 13) \
|
|
)
|
|
|
|
#define set_ccr(x) \
|
|
carry_flag_ = (x) & 0x0001; \
|
|
overflow_flag_ = (x) & 0x0002; \
|
|
zero_result_ = ((x) & 0x0004) ^ 0x0004; \
|
|
negative_flag_ = (x) & 0x0008; \
|
|
extend_flag_ = (x) & 0x0010;
|
|
|
|
#define set_status(x) \
|
|
set_ccr(x) \
|
|
interrupt_level_ = ((x) >> 8) & 7; \
|
|
trace_flag_ = (x) & 0x8000; \
|
|
set_is_supervisor(!!(((x) >> 13) & 1));
|
|
|
|
#define get_bus_code() \
|
|
uint16_t( \
|
|
((active_step_->microcycle.operation & Microcycle::IsProgram) ? 0x02 : 0x01) | \
|
|
(is_supervisor_ << 2) | \
|
|
(active_program_ ? 0x08 : 0) | \
|
|
((active_step_->microcycle.operation & Microcycle::Read) ? 0x10 : 0) | \
|
|
(decoded_instruction_.full & 0xffe0) \
|
|
)
|
|
|
|
#define u_extend16(x) uint32_t(int16_t(x))
|
|
#define u_extend8(x) uint32_t(int8_t(x))
|
|
#define s_extend16(x) int32_t(int16_t(x))
|
|
#define s_extend8(x) int32_t(int8_t(x))
|
|
|
|
#define convert_to_bit_count_16(x) \
|
|
x = ((x & 0xaaaa) >> 1) + (x & 0x5555); \
|
|
x = ((x & 0xcccc) >> 2) + (x & 0x3333); \
|
|
x = ((x & 0xf0f0) >> 4) + (x & 0x0f0f); \
|
|
x = ((x & 0xff00) >> 8) + (x & 0x00ff);
|
|
|
|
// Sets the length of the next microcycle; if this is a debug build, also confirms
|
|
// that the microcycle being adjusted is the one that it's permissible to adjust.
|
|
#ifdef NDEBUG
|
|
#define set_next_microcycle_length(x) \
|
|
bus_program->microcycle.length = x
|
|
#else
|
|
#define set_next_microcycle_length(x) \
|
|
assert(bus_program->microcycle.is_resizeable); \
|
|
bus_program->microcycle.length = x
|
|
#endif
|
|
|
|
template <class T, bool dtack_is_implicit, bool signal_will_perform> void Processor<T, dtack_is_implicit, signal_will_perform>::run_for(HalfCycles duration) {
|
|
const HalfCycles remaining_duration = duration + half_cycles_left_to_run_;
|
|
|
|
// This loop counts upwards rather than downwards because it simplifies calculation of
|
|
// E as and when required.
|
|
HalfCycles cycles_run_for;
|
|
while(cycles_run_for < remaining_duration) {
|
|
/*
|
|
PERFORM THE CURRENT BUS STEP'S MICROCYCLE.
|
|
*/
|
|
switch(execution_state_) {
|
|
default:
|
|
case ExecutionState::Executing:
|
|
// Check for entry into the halted state.
|
|
if(halt_ && active_step_[0].microcycle.operation & Microcycle::NewAddress) {
|
|
execution_state_ = ExecutionState::Halted;
|
|
continue;
|
|
}
|
|
|
|
if(active_step_->microcycle.data_select_active()) {
|
|
// Check whether the processor needs to await DTack.
|
|
if(!dtack_is_implicit && !dtack_ && !bus_error_) {
|
|
execution_state_ = ExecutionState::WaitingForDTack;
|
|
dtack_cycle_ = active_step_->microcycle;
|
|
dtack_cycle_.length = HalfCycles(2);
|
|
dtack_cycle_.operation &= ~(Microcycle::SelectByte | Microcycle::SelectWord);
|
|
continue;
|
|
}
|
|
|
|
// Check for bus error.
|
|
if(bus_error_ && !is_starting_interrupt_) {
|
|
const auto offending_address = *active_step_->microcycle.address;
|
|
active_program_ = nullptr;
|
|
active_micro_op_ = long_exception_micro_ops_;
|
|
populate_bus_error_steps(2, get_status(), get_bus_code(), offending_address);
|
|
program_counter_.full -= 4;
|
|
active_step_ = &all_bus_steps_[active_micro_op_->bus_program];
|
|
}
|
|
}
|
|
|
|
// Check for an address error. Which I have assumed happens before the microcycle that
|
|
// would nominate the new address.
|
|
if(
|
|
(active_step_[0].microcycle.operation & Microcycle::NewAddress) &&
|
|
(active_step_[1].microcycle.operation & Microcycle::SelectWord) &&
|
|
*active_step_->microcycle.address & 1) {
|
|
const auto offending_address = *active_step_->microcycle.address;
|
|
active_program_ = nullptr;
|
|
active_micro_op_ = long_exception_micro_ops_;
|
|
populate_bus_error_steps(3, get_status(), get_bus_code(), offending_address);
|
|
program_counter_.full -= 4;
|
|
active_step_ = &all_bus_steps_[active_micro_op_->bus_program];
|
|
|
|
// TODO: the above is only correct prior to the final microcycle of an
|
|
// instruction. If an exception occurs in the final microcycle then
|
|
// the next instruction will already have moved into the current instruction
|
|
// slot (decoded_instruction_ in my terms).
|
|
|
|
// TODO: it's also not correct for a bus error that occurs during another exception.
|
|
}
|
|
|
|
// Perform the microcycle if it is of non-zero length. If this is an operation that
|
|
// would normally strobe one of the data selects and VPA is active, it will also need
|
|
// stretching.
|
|
if(active_step_->microcycle.length != HalfCycles(0)) {
|
|
if(is_peripheral_address_ && active_step_->microcycle.data_select_active()) {
|
|
auto cycle_copy = active_step_->microcycle;
|
|
cycle_copy.operation |= Microcycle::IsPeripheral;
|
|
|
|
// Extend length by: (i) distance to next E low, plus (ii) difference between
|
|
// current length and a whole E cycle.
|
|
cycle_copy.length = HalfCycles(20); // i.e. one E cycle in length.
|
|
cycle_copy.length += (e_clock_phase_ + cycles_run_for) % 10;
|
|
|
|
cycles_run_for +=
|
|
cycle_copy.length +
|
|
bus_handler_.perform_bus_operation(cycle_copy, is_supervisor_);
|
|
} else {
|
|
cycles_run_for +=
|
|
active_step_->microcycle.length +
|
|
bus_handler_.perform_bus_operation(active_step_->microcycle, is_supervisor_);
|
|
}
|
|
}
|
|
|
|
#ifdef LOG_TRACE
|
|
if(should_log && !(active_step_->microcycle.operation & Microcycle::IsProgram)) {
|
|
switch(active_step_->microcycle.operation & (Microcycle::SelectWord | Microcycle::SelectByte | Microcycle::Read)) {
|
|
default: break;
|
|
|
|
case Microcycle::SelectWord | Microcycle::Read:
|
|
printf("[%08x -> %04x] ", *active_step_->microcycle.address, active_step_->microcycle.value->full);
|
|
break;
|
|
case Microcycle::SelectByte | Microcycle::Read:
|
|
printf("[%08x -> %02x] ", *active_step_->microcycle.address, active_step_->microcycle.value->halves.low);
|
|
break;
|
|
case Microcycle::SelectWord:
|
|
printf("{%04x -> %08x} ", active_step_->microcycle.value->full, *active_step_->microcycle.address);
|
|
break;
|
|
case Microcycle::SelectByte:
|
|
printf("{%02x -> %08x} ", active_step_->microcycle.value->halves.low, *active_step_->microcycle.address);
|
|
break;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
PERFORM THE BUS STEP'S ACTION.
|
|
*/
|
|
switch(active_step_->action) {
|
|
default:
|
|
std::cerr << "Unimplemented 68000 bus step action: " << int(active_step_->action) << std::endl;
|
|
return;
|
|
break;
|
|
|
|
case BusStep::Action::None: break;
|
|
|
|
case BusStep::Action::IncrementEffectiveAddress0: effective_address_[0].full += 2; break;
|
|
case BusStep::Action::IncrementEffectiveAddress1: effective_address_[1].full += 2; break;
|
|
case BusStep::Action::DecrementEffectiveAddress0: effective_address_[0].full -= 2; break;
|
|
case BusStep::Action::DecrementEffectiveAddress1: effective_address_[1].full -= 2; break;
|
|
case BusStep::Action::IncrementProgramCounter: program_counter_.full += 2; break;
|
|
|
|
case BusStep::Action::AdvancePrefetch:
|
|
prefetch_queue_.halves.high = prefetch_queue_.halves.low;
|
|
|
|
// During prefetch advance seems to be the only time the interrupt inputs are sampled;
|
|
// TODO: determine whether this really happens on *every* advance.
|
|
if(bus_interrupt_level_ > interrupt_level_) {
|
|
pending_interrupt_level_ = bus_interrupt_level_;
|
|
}
|
|
break;
|
|
}
|
|
|
|
// Move to the next bus step.
|
|
++ active_step_;
|
|
break;
|
|
|
|
case ExecutionState::Stopped:
|
|
// If an interrupt (TODO: or reset) has finally arrived that will be serviced,
|
|
// exit the STOP.
|
|
if(bus_interrupt_level_ > interrupt_level_) {
|
|
pending_interrupt_level_ = bus_interrupt_level_;
|
|
program_counter_.full += 4; // Don't return to this stop.
|
|
execution_state_ = ExecutionState::BeginInterrupt;
|
|
continue;
|
|
}
|
|
|
|
// Otherwise continue being stopped.
|
|
cycles_run_for +=
|
|
stop_cycle_.length +
|
|
bus_handler_.perform_bus_operation(stop_cycle_, is_supervisor_);
|
|
continue;
|
|
|
|
case ExecutionState::WaitingForDTack:
|
|
// If DTack or bus error has been signalled, stop waiting.
|
|
if(dtack_ || bus_error_) {
|
|
execution_state_ = ExecutionState::Executing;
|
|
continue;
|
|
}
|
|
|
|
// Otherwise, signal another cycle of wait.
|
|
cycles_run_for +=
|
|
dtack_cycle_.length +
|
|
bus_handler_.perform_bus_operation(dtack_cycle_, is_supervisor_);
|
|
continue;
|
|
|
|
case ExecutionState::Halted:
|
|
if(!halt_) {
|
|
execution_state_ = ExecutionState::Executing;
|
|
continue;
|
|
}
|
|
|
|
cycles_run_for +=
|
|
stop_cycle_.length +
|
|
bus_handler_.perform_bus_operation(stop_cycle_, is_supervisor_);
|
|
continue;
|
|
|
|
case ExecutionState::BeginInterrupt:
|
|
#ifdef LOG_TRACE
|
|
// should_log = true;
|
|
#endif
|
|
active_program_ = nullptr;
|
|
active_micro_op_ = interrupt_micro_ops_;
|
|
execution_state_ = ExecutionState::Executing;
|
|
active_step_ = &all_bus_steps_[active_micro_op_->bus_program];
|
|
is_starting_interrupt_ = true;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
FIND THE NEXT MICRO-OP IF UNKNOWN.
|
|
*/
|
|
if(active_step_->is_terminal()) {
|
|
while(true) {
|
|
// If there are any more micro-operations available, just move onwards.
|
|
if(active_micro_op_ && !active_micro_op_->is_terminal()) {
|
|
++active_micro_op_;
|
|
} else {
|
|
// Either the micro-operations for this instruction have been exhausted, or
|
|
// no instruction was ongoing. Either way, do a standard instruction operation.
|
|
|
|
if(pending_interrupt_level_) {
|
|
execution_state_ = ExecutionState::BeginInterrupt;
|
|
break;
|
|
}
|
|
|
|
if(trace_flag_ && last_trace_flag_) {
|
|
// The user has set the trace bit in the status register.
|
|
active_program_ = nullptr;
|
|
active_micro_op_ = short_exception_micro_ops_;
|
|
populate_trap_steps(9, get_status());
|
|
program_counter_.full -= 4;
|
|
} else {
|
|
#ifdef LOG_TRACE
|
|
if(should_log) {
|
|
std::cout << std::setfill('0');
|
|
std::cout << (extend_flag_ ? 'x' : '-') << (negative_flag_ ? 'n' : '-') << (zero_result_ ? '-' : 'z');
|
|
std::cout << (overflow_flag_ ? 'v' : '-') << (carry_flag_ ? 'c' : '-') << '\t';
|
|
std::cout << (is_supervisor_ ? 's' : 'u') << '\t';
|
|
for(int c = 0; c < 8; ++ c) std::cout << "d" << c << ":" << std::setw(8) << data_[c].full << " ";
|
|
for(int c = 0; c < 8; ++ c) std::cout << "a" << c << ":" << std::setw(8) << address_[c].full << " ";
|
|
if(is_supervisor_) {
|
|
std::cout << "usp:" << std::setw(8) << std::setfill('0') << stack_pointers_[0].full << " ";
|
|
} else {
|
|
std::cout << "ssp:" << std::setw(8) << std::setfill('0') << stack_pointers_[1].full << " ";
|
|
}
|
|
std::cout << '\n';
|
|
}
|
|
#endif
|
|
|
|
decoded_instruction_.full = prefetch_queue_.halves.high.full;
|
|
|
|
#ifndef NDEBUG
|
|
/* Debugging feature: reset the effective addresses and data latches, so that it's
|
|
more obvious if some of the instructions aren't properly feeding them. */
|
|
effective_address_[0].full = effective_address_[1].full = source_bus_data_[0].full = destination_bus_data_[0].full = 0x12344321;
|
|
#endif
|
|
|
|
#ifdef LOG_TRACE
|
|
if(should_log) {
|
|
std::cout << std::hex << (program_counter_.full - 4) << ": " << std::setw(4) << decoded_instruction_.full << '\t';
|
|
}
|
|
#endif
|
|
|
|
if constexpr (signal_will_perform) {
|
|
bus_handler_.will_perform(program_counter_.full - 4, decoded_instruction_.full);
|
|
}
|
|
|
|
#ifdef LOG_TRACE
|
|
// const uint32_t fetched_pc = (program_counter_.full - 4)&0xffffff;
|
|
|
|
// should_log |= fetched_pc == 0x6d9c;
|
|
// should_log = (fetched_pc >= 0x41806A && fetched_pc <= 0x418618);
|
|
// should_log |= fetched_pc == 0x4012A2;
|
|
// should_log &= fetched_pc != 0x4012AE;
|
|
|
|
// should_log = (fetched_pc >= 0x408D66) && (fetched_pc <= 0x408D84);
|
|
#endif
|
|
|
|
if(instructions[decoded_instruction_.full].micro_operations != std::numeric_limits<uint32_t>::max()) {
|
|
if((instructions[decoded_instruction_.full].source_dest & 0x80) && !is_supervisor_) {
|
|
// A privilege violation has been detected.
|
|
active_program_ = nullptr;
|
|
active_micro_op_ = short_exception_micro_ops_;
|
|
populate_trap_steps(8, get_status());
|
|
} else {
|
|
// Standard instruction dispatch.
|
|
active_program_ = &instructions[decoded_instruction_.full];
|
|
active_micro_op_ = &all_micro_ops_[active_program_->micro_operations];
|
|
}
|
|
} else {
|
|
// The opcode fetched isn't valid.
|
|
active_program_ = nullptr;
|
|
active_micro_op_ = short_exception_micro_ops_;
|
|
|
|
// The location of the failed instruction is what should end up on the stack.
|
|
program_counter_.full -= 4;
|
|
|
|
#ifdef LOG_TRACE
|
|
// should_log = true;
|
|
#endif
|
|
|
|
// The vector used depends on whether this is a vanilla unrecognised instruction,
|
|
// or one on the A or F lines.
|
|
switch(decoded_instruction_.full >> 12) {
|
|
default:
|
|
populate_trap_steps(4, get_status());
|
|
break;
|
|
case 0xa:
|
|
populate_trap_steps(10, get_status());
|
|
break;
|
|
case 0xf:
|
|
populate_trap_steps(11, get_status());
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
last_trace_flag_ = trace_flag_;
|
|
}
|
|
|
|
auto bus_program = &all_bus_steps_[active_micro_op_->bus_program];
|
|
using int_type = decltype(active_micro_op_->action);
|
|
switch(active_micro_op_->action) {
|
|
default:
|
|
std::cerr << "Unhandled 68000 micro op action " << std::hex << active_micro_op_->action << " within instruction " << decoded_instruction_.full << std::endl;
|
|
break;
|
|
|
|
case int_type(MicroOp::Action::None): break;
|
|
|
|
#define offset_pointer(x) reinterpret_cast<RegisterPair32 *>(&reinterpret_cast<uint8_t *>(static_cast<ProcessorStorage *>(this))[x])
|
|
#define source() offset_pointer(active_program_->source_offset)
|
|
#define source_address() address_[(active_program_->source_dest >> 4) & 7]
|
|
#define destination() offset_pointer(active_program_->destination_offset)
|
|
#define destination_address() address_[active_program_->source_dest & 7]
|
|
|
|
case int_type(MicroOp::Action::PerformOperation):
|
|
#define sub_overflow() ((result ^ destination) & (destination ^ source))
|
|
#define add_overflow() ((result ^ destination) & ~(destination ^ source))
|
|
switch(active_program_->operation) {
|
|
/*
|
|
ABCD adds the lowest bytes form the source and destination using BCD arithmetic,
|
|
obeying the extend flag.
|
|
*/
|
|
case Operation::ABCD: {
|
|
// Pull out the two halves, for simplicity.
|
|
const uint8_t source = source()->halves.low.halves.low;
|
|
const uint8_t destination = destination()->halves.low.halves.low;
|
|
|
|
// Perform the BCD add by evaluating the two nibbles separately.
|
|
const int unadjusted_result = destination + source + (extend_flag_ ? 1 : 0);
|
|
int result = (destination & 0xf) + (source & 0xf) + (extend_flag_ ? 1 : 0);
|
|
if(result > 0x09) result += 0x06;
|
|
result += (destination & 0xf0) + (source & 0xf0);
|
|
if(result > 0x99) result += 0x60;
|
|
|
|
// Set all flags essentially as if this were normal addition.
|
|
zero_result_ |= result & 0xff;
|
|
extend_flag_ = carry_flag_ = uint_fast32_t(result & ~0xff);
|
|
negative_flag_ = result & 0x80;
|
|
overflow_flag_ = ~unadjusted_result & result & 0x80;
|
|
|
|
// Store the result.
|
|
destination()->halves.low.halves.low = uint8_t(result);
|
|
} break;
|
|
|
|
// ADD and ADDA add two quantities, the latter sign extending and without setting any flags;
|
|
// ADDQ and SUBQ act as ADD and SUB, but taking the second argument from the instruction code.
|
|
#define addop(a, b, x) a + b + (x ? 1 : 0)
|
|
#define subop(a, b, x) a - b - (x ? 1 : 0)
|
|
#define z_set(a, b) a = b
|
|
#define z_or(a, b) a |= b
|
|
|
|
#define addsubb(a, b, dest, op, overflow, x, zero_op) \
|
|
const int source = a; \
|
|
const int destination = b; \
|
|
const auto result = op(destination, source, x); \
|
|
\
|
|
dest = uint8_t(result); \
|
|
zero_op(zero_result_, dest); \
|
|
extend_flag_ = carry_flag_ = uint_fast32_t(result & ~0xff); \
|
|
negative_flag_ = result & 0x80; \
|
|
overflow_flag_ = overflow() & 0x80;
|
|
|
|
#define addsubw(a, b, dest, op, overflow, x, zero_op) \
|
|
const int source = a; \
|
|
const int destination = b; \
|
|
const auto result = op(destination, source, x); \
|
|
\
|
|
dest = uint16_t(result); \
|
|
zero_op(zero_result_, dest); \
|
|
extend_flag_ = carry_flag_ = uint_fast32_t(result & ~0xffff); \
|
|
negative_flag_ = result & 0x8000; \
|
|
overflow_flag_ = overflow() & 0x8000;
|
|
|
|
#define addsubl(a, b, dest, op, overflow, x, zero_op) \
|
|
const uint64_t source = a; \
|
|
const uint64_t destination = b; \
|
|
const auto result = op(destination, source, x); \
|
|
\
|
|
dest = uint32_t(result); \
|
|
zero_op(zero_result_, dest); \
|
|
extend_flag_ = carry_flag_ = uint_fast32_t(result >> 32); \
|
|
negative_flag_ = result & 0x80000000; \
|
|
overflow_flag_ = overflow() & 0x80000000;
|
|
|
|
#define addb(a, b, dest, x, z) addsubb(a, b, dest, addop, add_overflow, x, z)
|
|
#define subb(a, b, dest, x, z) addsubb(a, b, dest, subop, sub_overflow, x, z)
|
|
#define addw(a, b, dest, x, z) addsubw(a, b, dest, addop, add_overflow, x, z)
|
|
#define subw(a, b, dest, x, z) addsubw(a, b, dest, subop, sub_overflow, x, z)
|
|
#define addl(a, b, dest, x, z) addsubl(a, b, dest, addop, add_overflow, x, z)
|
|
#define subl(a, b, dest, x, z) addsubl(a, b, dest, subop, sub_overflow, x, z)
|
|
|
|
#define no_extend(op, a, b, c) op(a, b, c, 0, z_set)
|
|
#define extend(op, a, b, c) op(a, b, c, extend_flag_, z_or)
|
|
|
|
#define q() (((decoded_instruction_.full >> 9)&7) ? ((decoded_instruction_.full >> 9)&7) : 8)
|
|
|
|
case Operation::ADDb: {
|
|
no_extend( addb,
|
|
source()->halves.low.halves.low,
|
|
destination()->halves.low.halves.low,
|
|
destination()->halves.low.halves.low);
|
|
} break;
|
|
|
|
case Operation::ADDXb: {
|
|
extend( addb,
|
|
source()->halves.low.halves.low,
|
|
destination()->halves.low.halves.low,
|
|
destination()->halves.low.halves.low);
|
|
} break;
|
|
|
|
case Operation::ADDQb: {
|
|
no_extend( addb,
|
|
q(),
|
|
destination()->halves.low.halves.low,
|
|
destination()->halves.low.halves.low);
|
|
} break;
|
|
|
|
case Operation::ADDw: {
|
|
no_extend( addw,
|
|
source()->halves.low.full,
|
|
destination()->halves.low.full,
|
|
destination()->halves.low.full);
|
|
} break;
|
|
|
|
case Operation::ADDXw: {
|
|
extend( addw,
|
|
source()->halves.low.full,
|
|
destination()->halves.low.full,
|
|
destination()->halves.low.full);
|
|
} break;
|
|
|
|
case Operation::ADDQw: {
|
|
no_extend( addw,
|
|
q(),
|
|
destination()->halves.low.full,
|
|
destination()->halves.low.full);
|
|
} break;
|
|
|
|
case Operation::ADDl: {
|
|
no_extend( addl,
|
|
source()->full,
|
|
destination()->full,
|
|
destination()->full);
|
|
} break;
|
|
|
|
case Operation::ADDXl: {
|
|
extend( addl,
|
|
source()->full,
|
|
destination()->full,
|
|
destination()->full);
|
|
} break;
|
|
|
|
case Operation::ADDQl: {
|
|
no_extend( addl,
|
|
q(),
|
|
destination()->full,
|
|
destination()->full);
|
|
} break;
|
|
|
|
case Operation::SUBb: {
|
|
no_extend( subb,
|
|
source()->halves.low.halves.low,
|
|
destination()->halves.low.halves.low,
|
|
destination()->halves.low.halves.low);
|
|
} break;
|
|
|
|
case Operation::SUBXb: {
|
|
extend( subb,
|
|
source()->halves.low.halves.low,
|
|
destination()->halves.low.halves.low,
|
|
destination()->halves.low.halves.low);
|
|
} break;
|
|
|
|
case Operation::SUBQb: {
|
|
no_extend( subb,
|
|
q(),
|
|
destination()->halves.low.halves.low,
|
|
destination()->halves.low.halves.low);
|
|
} break;
|
|
|
|
case Operation::SUBw: {
|
|
no_extend( subw,
|
|
source()->halves.low.full,
|
|
destination()->halves.low.full,
|
|
destination()->halves.low.full);
|
|
} break;
|
|
|
|
case Operation::SUBXw: {
|
|
extend( subw,
|
|
source()->halves.low.full,
|
|
destination()->halves.low.full,
|
|
destination()->halves.low.full);
|
|
} break;
|
|
|
|
case Operation::SUBQw: {
|
|
no_extend( subw,
|
|
q(),
|
|
destination()->halves.low.full,
|
|
destination()->halves.low.full);
|
|
} break;
|
|
|
|
case Operation::SUBl: {
|
|
no_extend( subl,
|
|
source()->full,
|
|
destination()->full,
|
|
destination()->full);
|
|
} break;
|
|
|
|
case Operation::SUBXl: {
|
|
extend( subl,
|
|
source()->full,
|
|
destination()->full,
|
|
destination()->full);
|
|
} break;
|
|
|
|
case Operation::SUBQl: {
|
|
no_extend( subl,
|
|
q(),
|
|
destination()->full,
|
|
destination()->full);
|
|
} break;
|
|
|
|
case Operation::ADDQAl:
|
|
destination()->full += q();
|
|
break;
|
|
|
|
case Operation::SUBQAl:
|
|
destination()->full -= q();
|
|
break;
|
|
|
|
#undef addl
|
|
#undef addw
|
|
#undef addb
|
|
#undef subl
|
|
#undef subw
|
|
#undef subb
|
|
#undef addsubl
|
|
#undef addsubw
|
|
#undef addsubb
|
|
#undef q
|
|
#undef z_set
|
|
#undef z_or
|
|
#undef no_extend
|
|
#undef extend
|
|
#undef addop
|
|
#undef subop
|
|
|
|
|
|
case Operation::ADDAw:
|
|
destination()->full += u_extend16(source()->halves.low.full);
|
|
break;
|
|
|
|
case Operation::ADDAl:
|
|
destination()->full += source()->full;
|
|
break;
|
|
|
|
case Operation::SUBAw:
|
|
destination()->full -= u_extend16(source()->halves.low.full);
|
|
break;
|
|
|
|
case Operation::SUBAl:
|
|
destination()->full -= source()->full;
|
|
break;
|
|
|
|
|
|
// BRA: alters the program counter, exclusively via the prefetch queue.
|
|
case Operation::BRA: {
|
|
const int8_t byte_offset = int8_t(prefetch_queue_.halves.high.halves.low);
|
|
|
|
// A non-zero offset byte branches by just that amount; otherwise use the word
|
|
// after as an offset. In both cases, treat as signed.
|
|
if(byte_offset) {
|
|
program_counter_.full += uint32_t(byte_offset);
|
|
} else {
|
|
program_counter_.full += u_extend16(prefetch_queue_.halves.low.full);
|
|
}
|
|
program_counter_.full -= 2;
|
|
} break;
|
|
|
|
// Two BTSTs: set the zero flag according to the value of the destination masked by
|
|
// the bit named in the source modulo the operation size.
|
|
case Operation::BTSTb:
|
|
zero_result_ = destination()->full & (1 << (source()->full & 7));
|
|
break;
|
|
|
|
case Operation::BTSTl:
|
|
zero_result_ = destination()->full & (1 << (source()->full & 31));
|
|
break;
|
|
|
|
case Operation::BCLRb:
|
|
zero_result_ = destination()->full & (1 << (source()->full & 7));
|
|
destination()->full &= ~(1 << (source()->full & 7));
|
|
break;
|
|
|
|
case Operation::BCLRl:
|
|
zero_result_ = destination()->full & (1 << (source()->full & 31));
|
|
destination()->full &= ~(1 << (source()->full & 31));
|
|
|
|
// Clearing in the top word requires an extra four cycles.
|
|
set_next_microcycle_length(HalfCycles(8 + ((source()->full & 31) / 16) * 4));
|
|
break;
|
|
|
|
case Operation::BCHGl:
|
|
zero_result_ = destination()->full & (1 << (source()->full & 31));
|
|
destination()->full ^= 1 << (source()->full & 31);
|
|
set_next_microcycle_length(HalfCycles(4 + (((source()->full & 31) / 16) * 4)));
|
|
break;
|
|
|
|
case Operation::BCHGb:
|
|
zero_result_ = destination()->halves.low.halves.low & (1 << (source()->full & 7));
|
|
destination()->halves.low.halves.low ^= 1 << (source()->full & 7);
|
|
break;
|
|
|
|
case Operation::BSETl:
|
|
zero_result_ = destination()->full & (1 << (source()->full & 31));
|
|
destination()->full |= 1 << (source()->full & 31);
|
|
set_next_microcycle_length(HalfCycles(4 + (((source()->full & 31) / 16) * 4)));
|
|
break;
|
|
|
|
case Operation::BSETb:
|
|
zero_result_ = destination()->halves.low.halves.low & (1 << (source()->full & 7));
|
|
destination()->halves.low.halves.low |= 1 << (source()->full & 7);
|
|
break;
|
|
|
|
// Bcc: ordinarily evaluates the relevant condition and displacement size and then:
|
|
// if condition is false, schedules bus operations to get past this instruction;
|
|
// otherwise applies the offset and schedules bus operations to refill the prefetch queue.
|
|
//
|
|
// Special case: the condition code is 1, which is ordinarily false. In that case this
|
|
// is the trailing step of a BSR.
|
|
case Operation::Bcc: {
|
|
// Grab the 8-bit offset.
|
|
const int8_t byte_offset = int8_t(prefetch_queue_.halves.high.halves.low);
|
|
|
|
// Check whether this is secretly BSR.
|
|
const bool is_bsr = ((decoded_instruction_.full >> 8) & 0xf) == 1;
|
|
|
|
// Test the conditional, treating 'false' as true.
|
|
const bool should_branch = is_bsr || evaluate_condition(decoded_instruction_.full >> 8);
|
|
|
|
// Schedule something appropriate, by rewriting the program for this instruction temporarily.
|
|
if(should_branch) {
|
|
if(byte_offset) {
|
|
program_counter_.full += decltype(program_counter_.full)(byte_offset);
|
|
} else {
|
|
program_counter_.full += u_extend16(prefetch_queue_.halves.low.full);
|
|
}
|
|
program_counter_.full -= 2;
|
|
bus_program = is_bsr ? bsr_bus_steps_ : branch_taken_bus_steps_;
|
|
} else {
|
|
if(byte_offset) {
|
|
bus_program = branch_byte_not_taken_bus_steps_;
|
|
} else {
|
|
bus_program = branch_word_not_taken_bus_steps_;
|
|
}
|
|
}
|
|
} break;
|
|
|
|
case Operation::DBcc: {
|
|
// Decide what sort of DBcc this is.
|
|
if(!evaluate_condition(decoded_instruction_.full >> 8)) {
|
|
-- source()->halves.low.full;
|
|
const auto target_program_counter = program_counter_.full + u_extend16(prefetch_queue_.halves.low.full) - 2;
|
|
|
|
if(source()->halves.low.full == 0xffff) {
|
|
// This DBcc will be ignored as the counter has underflowed.
|
|
// Schedule n np np np and continue. Assumed: the first np
|
|
// is from where the branch would have been if taken?
|
|
bus_program = dbcc_condition_false_no_branch_steps_;
|
|
dbcc_false_address_ = target_program_counter;
|
|
} else {
|
|
// Take the branch. Change PC and schedule n np np.
|
|
bus_program = dbcc_condition_false_branch_steps_;
|
|
program_counter_.full = target_program_counter;
|
|
}
|
|
} else {
|
|
// This DBcc will be ignored as the condition is true;
|
|
// perform nn np np and continue.
|
|
bus_program = dbcc_condition_true_steps_;
|
|
}
|
|
} break;
|
|
|
|
case Operation::Scc: {
|
|
destination()->halves.low.halves.low =
|
|
evaluate_condition(decoded_instruction_.full >> 8) ? 0xff : 0x00;
|
|
} break;
|
|
|
|
/*
|
|
CLRs: store 0 to the destination, set the zero flag, and clear
|
|
negative, overflow and carry.
|
|
*/
|
|
case Operation::CLRb:
|
|
destination()->halves.low.halves.low = 0;
|
|
negative_flag_ = overflow_flag_ = carry_flag_ = zero_result_ = 0;
|
|
break;
|
|
|
|
case Operation::CLRw:
|
|
destination()->halves.low.full = 0;
|
|
negative_flag_ = overflow_flag_ = carry_flag_ = zero_result_ = 0;
|
|
break;
|
|
|
|
case Operation::CLRl:
|
|
destination()->full = 0;
|
|
negative_flag_ = overflow_flag_ = carry_flag_ = zero_result_ = 0;
|
|
break;
|
|
|
|
/*
|
|
CMP.b, CMP.l and CMP.w: sets the condition flags (other than extend) based on a subtraction
|
|
of the source from the destination; the result of the subtraction is not stored.
|
|
*/
|
|
case Operation::CMPb: {
|
|
const uint8_t source = source()->halves.low.halves.low;
|
|
const uint8_t destination = destination()->halves.low.halves.low;
|
|
const int result = destination - source;
|
|
|
|
zero_result_ = result & 0xff;
|
|
carry_flag_ = decltype(carry_flag_)(result & ~0xff);
|
|
negative_flag_ = result & 0x80;
|
|
overflow_flag_ = sub_overflow() & 0x80;
|
|
} break;
|
|
|
|
case Operation::CMPw: {
|
|
const uint16_t source = source()->halves.low.full;
|
|
const uint16_t destination = destination()->halves.low.full;
|
|
const int result = destination - source;
|
|
|
|
zero_result_ = result & 0xffff;
|
|
carry_flag_ = decltype(carry_flag_)(result & ~0xffff);
|
|
negative_flag_ = result & 0x8000;
|
|
overflow_flag_ = sub_overflow() & 0x8000;
|
|
} break;
|
|
|
|
case Operation::CMPAw: {
|
|
const auto source = uint64_t(u_extend16(source()->halves.low.full));
|
|
const uint64_t destination = destination()->full;
|
|
const auto result = destination - source;
|
|
|
|
zero_result_ = uint32_t(result);
|
|
carry_flag_ = result >> 32;
|
|
negative_flag_ = result & 0x80000000;
|
|
overflow_flag_ = sub_overflow() & 0x80000000;
|
|
} break;
|
|
|
|
case Operation::CMPl: {
|
|
const auto source = uint64_t(source()->full);
|
|
const auto destination = uint64_t(destination()->full);
|
|
const auto result = destination - source;
|
|
|
|
zero_result_ = uint32_t(result);
|
|
carry_flag_ = result >> 32;
|
|
negative_flag_ = result & 0x80000000;
|
|
overflow_flag_ = sub_overflow() & 0x80000000;
|
|
} break;
|
|
|
|
// JMP: copies EA(0) to the program counter.
|
|
case Operation::JMP:
|
|
program_counter_ = effective_address_[0];
|
|
break;
|
|
|
|
// JMP: copies the source bus data to the program counter.
|
|
case Operation::RTS:
|
|
program_counter_ = source_bus_data_[0];
|
|
break;
|
|
|
|
/*
|
|
MOVE.b, MOVE.l and MOVE.w: move the least significant byte or word, or the entire long word,
|
|
and set negative, zero, overflow and carry as appropriate.
|
|
*/
|
|
case Operation::MOVEb:
|
|
zero_result_ = destination()->halves.low.halves.low = source()->halves.low.halves.low;
|
|
negative_flag_ = zero_result_ & 0x80;
|
|
overflow_flag_ = carry_flag_ = 0;
|
|
break;
|
|
|
|
case Operation::MOVEw:
|
|
zero_result_ = destination()->halves.low.full = source()->halves.low.full;
|
|
negative_flag_ = zero_result_ & 0x8000;
|
|
overflow_flag_ = carry_flag_ = 0;
|
|
break;
|
|
|
|
case Operation::MOVEl:
|
|
zero_result_ = destination()->full = source()->full;
|
|
negative_flag_ = zero_result_ & 0x80000000;
|
|
overflow_flag_ = carry_flag_ = 0;
|
|
break;
|
|
|
|
/*
|
|
MOVE.q: a single byte is moved from the current instruction, and sign extended.
|
|
*/
|
|
case Operation::MOVEq:
|
|
zero_result_ = destination()->full = prefetch_queue_.halves.high.halves.low;
|
|
negative_flag_ = zero_result_ & 0x80;
|
|
overflow_flag_ = carry_flag_ = 0;
|
|
destination()->full |= negative_flag_ ? 0xffffff00 : 0;
|
|
break;
|
|
|
|
/*
|
|
MOVEA.l: move the entire long word;
|
|
MOVEA.w: move the least significant word and sign extend it.
|
|
Neither sets any flags.
|
|
*/
|
|
case Operation::MOVEAw:
|
|
destination()->halves.low.full = source()->halves.low.full;
|
|
destination()->halves.high.full = (destination()->halves.low.full & 0x8000) ? 0xffff : 0;
|
|
break;
|
|
|
|
case Operation::MOVEAl:
|
|
destination()->full = source()->full;
|
|
break;
|
|
|
|
case Operation::PEA:
|
|
destination_bus_data_[0] = effective_address_[0];
|
|
break;
|
|
|
|
/*
|
|
Status word moves and manipulations.
|
|
*/
|
|
|
|
case Operation::MOVEtoSR:
|
|
set_status(source()->full);
|
|
break;
|
|
|
|
case Operation::MOVEfromSR:
|
|
destination()->halves.low.full = get_status();
|
|
break;
|
|
|
|
case Operation::MOVEtoCCR:
|
|
set_ccr(source()->full);
|
|
break;
|
|
|
|
case Operation::EXTbtow:
|
|
destination()->halves.low.halves.high =
|
|
(destination()->halves.low.halves.low & 0x80) ? 0xff : 0x00;
|
|
overflow_flag_ = carry_flag_ = 0;
|
|
zero_result_ = destination()->halves.low.full;
|
|
negative_flag_ = zero_result_ & 0x8000;
|
|
break;
|
|
|
|
case Operation::EXTwtol:
|
|
destination()->halves.high.full =
|
|
(destination()->halves.low.full & 0x8000) ? 0xffff : 0x0000;
|
|
overflow_flag_ = carry_flag_ = 0;
|
|
zero_result_ = destination()->full;
|
|
negative_flag_ = zero_result_ & 0x80000000;
|
|
break;
|
|
|
|
#define and_op(a, b) a &= b
|
|
#define or_op(a, b) a |= b
|
|
#define eor_op(a, b) a ^= b
|
|
|
|
#define apply(op, func) {\
|
|
auto status = get_status(); \
|
|
op(status, prefetch_queue_.halves.high.full); \
|
|
func(status); \
|
|
program_counter_.full -= 2; \
|
|
}
|
|
|
|
#define apply_sr(op) apply(op, set_status)
|
|
#define apply_ccr(op) apply(op, set_ccr)
|
|
|
|
case Operation::ANDItoSR: apply_sr(and_op); break;
|
|
case Operation::EORItoSR: apply_sr(eor_op); break;
|
|
case Operation::ORItoSR: apply_sr(or_op); break;
|
|
|
|
case Operation::ANDItoCCR: apply_ccr(and_op); break;
|
|
case Operation::EORItoCCR: apply_ccr(eor_op); break;
|
|
case Operation::ORItoCCR: apply_ccr(or_op); break;
|
|
|
|
#undef apply_ccr
|
|
#undef apply_sr
|
|
#undef apply
|
|
#undef eor_op
|
|
#undef or_op
|
|
#undef and_op
|
|
|
|
/*
|
|
Multiplications.
|
|
*/
|
|
|
|
case Operation::MULU: {
|
|
destination()->full = destination()->halves.low.full * source()->halves.low.full;
|
|
carry_flag_ = overflow_flag_ = 0;
|
|
zero_result_ = destination()->full;
|
|
negative_flag_ = zero_result_ & 0x80000000;
|
|
|
|
int number_of_ones = source()->halves.low.full;
|
|
convert_to_bit_count_16(number_of_ones);
|
|
|
|
// Time taken = 38 cycles + 2 cycles per 1 in the source.
|
|
set_next_microcycle_length(HalfCycles(4 * number_of_ones + 34*2));
|
|
} break;
|
|
|
|
case Operation::MULS: {
|
|
destination()->full =
|
|
u_extend16(destination()->halves.low.full) * u_extend16(source()->halves.low.full);
|
|
carry_flag_ = overflow_flag_ = 0;
|
|
zero_result_ = destination()->full;
|
|
negative_flag_ = zero_result_ & 0x80000000;
|
|
|
|
// Find the number of 01 or 10 pairs in the 17-bit number
|
|
// formed by the source value with a 0 suffix.
|
|
int number_of_pairs = source()->halves.low.full;
|
|
number_of_pairs = (number_of_pairs ^ (number_of_pairs << 1)) & 0xffff;
|
|
convert_to_bit_count_16(number_of_pairs);
|
|
|
|
// Time taken = 38 cycles + 2 cycles per 1 in the source.
|
|
set_next_microcycle_length(HalfCycles(4 * number_of_pairs + 34*2));
|
|
} break;
|
|
|
|
/*
|
|
Divisions.
|
|
*/
|
|
|
|
#define announce_divide_by_zero() \
|
|
negative_flag_ = overflow_flag_ = 0; \
|
|
zero_result_ = 1; \
|
|
active_program_ = nullptr; \
|
|
active_micro_op_ = short_exception_micro_ops_; \
|
|
bus_program = &all_bus_steps_[active_micro_op_->bus_program]; \
|
|
\
|
|
populate_trap_steps(5, get_status()); \
|
|
bus_program->microcycle.length = HalfCycles(20); \
|
|
\
|
|
program_counter_.full -= 2;
|
|
|
|
case Operation::DIVU: {
|
|
carry_flag_ = 0;
|
|
|
|
// An attempt to divide by zero schedules an exception.
|
|
if(!source()->halves.low.full) {
|
|
// Schedule a divide-by-zero exception.
|
|
announce_divide_by_zero();
|
|
break;
|
|
}
|
|
|
|
uint32_t dividend = destination()->full;
|
|
uint32_t divisor = source()->halves.low.full;
|
|
const auto quotient = dividend / divisor;
|
|
|
|
// If overflow would occur, appropriate flags are set and the result is not written back.
|
|
if(quotient > 65535) {
|
|
overflow_flag_ = zero_result_ = negative_flag_ = 1;
|
|
set_next_microcycle_length(HalfCycles(3*2*2));
|
|
break;
|
|
}
|
|
|
|
const uint16_t remainder = uint16_t(dividend % divisor);
|
|
destination()->halves.high.full = remainder;
|
|
destination()->halves.low.full = uint16_t(quotient);
|
|
|
|
overflow_flag_ = 0;
|
|
zero_result_ = quotient;
|
|
negative_flag_ = zero_result_ & 0x8000;
|
|
|
|
// Calculate cost; this is based on the flowchart in yacht.txt.
|
|
// I could actually calculate the division result here, since this is
|
|
// a classic divide algorithm, but would rather that errors produce
|
|
// incorrect timing only, not incorrect timing plus incorrect results.
|
|
int cycles_expended = 12; // Covers the nn n to get into the loop.
|
|
|
|
divisor <<= 16;
|
|
for(int c = 0; c < 15; ++c) {
|
|
if(dividend & 0x80000000) {
|
|
dividend = (dividend << 1) - divisor;
|
|
cycles_expended += 4; // Easy; just the fixed nn iteration cost.
|
|
} else {
|
|
dividend <<= 1;
|
|
|
|
// Yacht.txt, and indeed a real microprogram, would just subtract here
|
|
// and test the sign of the result, but this is easier to follow:
|
|
if (dividend >= divisor) {
|
|
dividend -= divisor;
|
|
cycles_expended += 6; // i.e. the original nn plus one further n before going down the MSB=0 route.
|
|
} else {
|
|
cycles_expended += 8; // The costliest path (since in real life it's a subtraction and then a step
|
|
// back from there) — all costs accrue. So the fixed nn loop plus another n,
|
|
// plus another one.
|
|
}
|
|
}
|
|
}
|
|
set_next_microcycle_length(HalfCycles(cycles_expended * 2));
|
|
} break;
|
|
|
|
case Operation::DIVS: {
|
|
carry_flag_ = 0;
|
|
|
|
// An attempt to divide by zero schedules an exception.
|
|
if(!source()->halves.low.full) {
|
|
// Schedule a divide-by-zero exception.
|
|
announce_divide_by_zero()
|
|
break;
|
|
}
|
|
|
|
const int32_t signed_dividend = int32_t(destination()->full);
|
|
const int32_t signed_divisor = s_extend16(source()->halves.low.full);
|
|
const auto result_sign =
|
|
( (0 <= signed_dividend) - (signed_dividend < 0) ) *
|
|
( (0 <= signed_divisor) - (signed_divisor < 0) );
|
|
|
|
const uint32_t dividend = uint32_t(abs(signed_dividend));
|
|
const uint32_t divisor = uint32_t(abs(signed_divisor));
|
|
|
|
int cycles_expended = 12; // Covers the nn nnn n to get beyond the sign test.
|
|
if(signed_dividend < 0) {
|
|
cycles_expended += 2; // An additional microycle applies if the dividend is negative.
|
|
}
|
|
|
|
// Check for overflow. If it exists, work here is already done.
|
|
const auto quotient = dividend / divisor;
|
|
if(quotient > 32767) {
|
|
overflow_flag_ = 1;
|
|
set_next_microcycle_length(HalfCycles(6*2*2));
|
|
break;
|
|
}
|
|
|
|
const uint16_t remainder = uint16_t(signed_dividend % signed_divisor);
|
|
const int signed_quotient = result_sign*int(quotient);
|
|
destination()->halves.high.full = remainder;
|
|
destination()->halves.low.full = uint16_t(signed_quotient);
|
|
|
|
zero_result_ = decltype(zero_result_)(signed_quotient);
|
|
negative_flag_ = zero_result_ & 0x8000;
|
|
overflow_flag_ = 0;
|
|
|
|
// Algorithm here: there is a fixed cost per unset bit
|
|
// in the first 15 bits of the unsigned quotient.
|
|
auto positive_quotient_bits = ~quotient & 0xfffe;
|
|
convert_to_bit_count_16(positive_quotient_bits);
|
|
cycles_expended += 2 * positive_quotient_bits;
|
|
|
|
// There's then no way to terminate the loop that isn't at least ten cycles long;
|
|
// there's also a fixed overhead per bit. The two together add up to the 104 below.
|
|
cycles_expended += 104;
|
|
|
|
// This picks up at 'No more bits' in yacht.txt's diagram.
|
|
if(signed_divisor < 0) {
|
|
cycles_expended += 2;
|
|
} else if(signed_dividend < 0) {
|
|
cycles_expended += 4;
|
|
}
|
|
set_next_microcycle_length(HalfCycles(cycles_expended * 2));
|
|
} break;
|
|
|
|
#undef announce_divide_by_zero
|
|
|
|
/*
|
|
MOVEP: move words and long-words a byte at a time.
|
|
*/
|
|
|
|
case Operation::MOVEPtoMw:
|
|
// Write pattern is nW+ nw, which should write the low word of the source in big-endian form.
|
|
destination_bus_data_[0].halves.high.full = source()->halves.low.halves.high;
|
|
destination_bus_data_[0].halves.low.full = source()->halves.low.halves.low;
|
|
break;
|
|
|
|
case Operation::MOVEPtoMl:
|
|
// Write pattern is nW+ nWr+ nw+ nwr, which should write the source in big-endian form.
|
|
destination_bus_data_[0].halves.high.full = source()->halves.high.halves.high;
|
|
source_bus_data_[0].halves.high.full = source()->halves.high.halves.low;
|
|
destination_bus_data_[0].halves.low.full = source()->halves.low.halves.high;
|
|
source_bus_data_[0].halves.low.full = source()->halves.low.halves.low;
|
|
break;
|
|
|
|
case Operation::MOVEPtoRw:
|
|
// Read pattern is nRd+ nrd.
|
|
source()->halves.low.halves.high = destination_bus_data_[0].halves.high.halves.low;
|
|
source()->halves.low.halves.low = destination_bus_data_[0].halves.low.halves.low;
|
|
break;
|
|
|
|
case Operation::MOVEPtoRl:
|
|
// Read pattern is nRd+ nR+ nrd+ nr.
|
|
source()->halves.high.halves.high = destination_bus_data_[0].halves.high.halves.low;
|
|
source()->halves.high.halves.low = source_bus_data_[0].halves.high.halves.low;
|
|
source()->halves.low.halves.high = destination_bus_data_[0].halves.low.halves.low;
|
|
source()->halves.low.halves.low = source_bus_data_[0].halves.low.halves.low;
|
|
break;
|
|
|
|
/*
|
|
MOVEM: multi-word moves.
|
|
*/
|
|
|
|
#define setup_movem(words_per_reg, base) \
|
|
/* Count the number of long words to move. */ \
|
|
size_t total_to_move = 0; \
|
|
auto mask = next_word_; \
|
|
while(mask) { \
|
|
total_to_move += mask&1; \
|
|
mask >>= 1; \
|
|
} \
|
|
\
|
|
/* Twice that many words plus one will need to be moved */ \
|
|
bus_program = base + (64 - total_to_move*words_per_reg)*2; \
|
|
\
|
|
/* Fill in the proper addresses and targets. */ \
|
|
const auto mode = (decoded_instruction_.full >> 3) & 7; \
|
|
uint32_t start_address; \
|
|
if(mode <= 4) { \
|
|
start_address = destination_address().full; \
|
|
} else { \
|
|
start_address = effective_address_[1].full; \
|
|
} \
|
|
\
|
|
auto step = bus_program; \
|
|
uint32_t *address_storage = precomputed_addresses_; \
|
|
mask = next_word_; \
|
|
int offset = 0;
|
|
|
|
#define inc_action(x, v) x += v
|
|
#define dec_action(x, v) x -= v
|
|
|
|
#define write_address_sequence_long(action, l) \
|
|
while(mask) { \
|
|
if(mask&1) { \
|
|
address_storage[0] = start_address; \
|
|
action(start_address, 2); \
|
|
address_storage[1] = start_address; \
|
|
action(start_address, 2); \
|
|
\
|
|
step[0].microcycle.address = step[1].microcycle.address = address_storage; \
|
|
step[2].microcycle.address = step[3].microcycle.address = address_storage + 1; \
|
|
\
|
|
const auto target = (offset > 7) ? &address_[offset&7] : &data_[offset]; \
|
|
step[l].microcycle.value = step[l+1].microcycle.value = &target->halves.high; \
|
|
step[(l^2)].microcycle.value = step[(l^2)+1].microcycle.value = &target->halves.low; \
|
|
\
|
|
address_storage += 2; \
|
|
step += 4; \
|
|
} \
|
|
mask >>= 1; \
|
|
action(offset, 1); \
|
|
}
|
|
|
|
#define write_address_sequence_word(action) \
|
|
while(mask) { \
|
|
if(mask&1) { \
|
|
address_storage[0] = start_address; \
|
|
action(start_address, 2); \
|
|
\
|
|
step[0].microcycle.address = step[1].microcycle.address = address_storage; \
|
|
\
|
|
const auto target = (offset > 7) ? &address_[offset&7] : &data_[offset]; \
|
|
step[0].microcycle.value = step[1].microcycle.value = &target->halves.low; \
|
|
\
|
|
++ address_storage; \
|
|
step += 2; \
|
|
} \
|
|
mask >>= 1; \
|
|
action(offset, 1); \
|
|
}
|
|
|
|
case Operation::MOVEMtoRl: {
|
|
setup_movem(2, movem_read_steps_);
|
|
|
|
// Everything for move to registers is based on an incrementing
|
|
// address; per M68000PRM:
|
|
//
|
|
// "[If using the postincrement addressing mode then] the incremented address
|
|
// register contains the address of the last operand loaded plus the operand length.
|
|
// If the addressing register is also loaded from memory, the memory value is ignored
|
|
// and the register is written with the postincremented effective address."
|
|
//
|
|
// The latter part is dealt with by MicroOp::Action::MOVEMtoRComplete, which also
|
|
// does any necessary sign extension.
|
|
write_address_sequence_long(inc_action, 0);
|
|
|
|
// MOVEM to R always reads one word too many.
|
|
address_storage[0] = start_address;
|
|
step[0].microcycle.address = step[1].microcycle.address = address_storage;
|
|
step[0].microcycle.value = step[1].microcycle.value = &throwaway_value_;
|
|
movem_final_address_ = start_address;
|
|
} break;
|
|
|
|
case Operation::MOVEMtoRw: {
|
|
setup_movem(1, movem_read_steps_);
|
|
write_address_sequence_word(inc_action);
|
|
|
|
// MOVEM to R always reads one word too many.
|
|
address_storage[0] = start_address;
|
|
step[0].microcycle.address = step[1].microcycle.address = address_storage;
|
|
step[0].microcycle.value = step[1].microcycle.value = &throwaway_value_;
|
|
movem_final_address_ = start_address;
|
|
} break;
|
|
|
|
case Operation::MOVEMtoMl: {
|
|
setup_movem(2, movem_write_steps_);
|
|
|
|
// MOVEM to M counts downwards and enumerates the registers in reverse order
|
|
// if subject to the predecrementing mode; otherwise it counts upwards and
|
|
// operates exactly as does MOVEM to R.
|
|
//
|
|
// Note also: "The MC68000 and MC68010 write the initial register value
|
|
// (not decremented) [when writing a register that is providing
|
|
// pre-decrementing addressing]."
|
|
//
|
|
// Hence the decrementing register (if any) is updated
|
|
// by MicroOp::Action::MOVEMtoMComplete.
|
|
if(mode == 4) {
|
|
offset = 15;
|
|
start_address -= 2;
|
|
write_address_sequence_long(dec_action, 2);
|
|
movem_final_address_ = start_address + 2;
|
|
} else {
|
|
write_address_sequence_long(inc_action, 0);
|
|
}
|
|
} break;
|
|
|
|
case Operation::MOVEMtoMw: {
|
|
setup_movem(1, movem_write_steps_);
|
|
|
|
if(mode == 4) {
|
|
offset = 15;
|
|
start_address -= 2;
|
|
write_address_sequence_word(dec_action);
|
|
movem_final_address_ = start_address + 2;
|
|
} else {
|
|
write_address_sequence_word(inc_action);
|
|
}
|
|
} break;
|
|
|
|
#undef setup_movem
|
|
#undef write_address_sequence_long
|
|
#undef write_address_sequence_word
|
|
#undef inc_action
|
|
#undef dec_action
|
|
|
|
// TRAP, which is a nicer form of ILLEGAL.
|
|
case Operation::TRAP: {
|
|
// Select the trap steps as next; the initial microcycle should be 4 cycles long.
|
|
bus_program = trap_steps_;
|
|
populate_trap_steps((decoded_instruction_.full & 15) + 32, get_status());
|
|
set_next_microcycle_length(HalfCycles(12));
|
|
|
|
// The program counter to push is actually one slot ago.
|
|
program_counter_.full -= 2;
|
|
} break;
|
|
|
|
case Operation::TRAPV: {
|
|
if(overflow_flag_) {
|
|
// Select the trap steps as next; the initial microcycle should be skipped.
|
|
bus_program = trap_steps_;
|
|
populate_trap_steps(7, get_status());
|
|
set_next_microcycle_length(HalfCycles(4));
|
|
|
|
// Push the address after the TRAPV.
|
|
program_counter_.full -= 4;
|
|
}
|
|
} break;
|
|
|
|
case Operation::CHK: {
|
|
const bool is_under = s_extend16(destination()->halves.low.full) < 0;
|
|
const bool is_over = s_extend16(destination()->halves.low.full) > s_extend16(source()->halves.low.full);
|
|
|
|
overflow_flag_ = carry_flag_ = 0;
|
|
zero_result_ = destination()->halves.low.full;
|
|
|
|
// Test applied for N:
|
|
//
|
|
// if Dn < 0, set negative flag;
|
|
// otherwise, if Dn > <ea>, reset negative flag.
|
|
if(is_over) negative_flag_ = 0;
|
|
if(is_under) negative_flag_ = 1;
|
|
|
|
// No exception is the default course of action; deviate only if an
|
|
// exception is necessary.
|
|
if(is_under || is_over) {
|
|
bus_program = trap_steps_;
|
|
populate_trap_steps(6, get_status());
|
|
if(is_over) {
|
|
set_next_microcycle_length(HalfCycles(20));
|
|
} else {
|
|
set_next_microcycle_length(HalfCycles(24));
|
|
}
|
|
|
|
// The program counter to push is two slots ago as whatever was the correct prefetch
|
|
// to continue without an exception has already happened, just in case.
|
|
program_counter_.full -= 4;
|
|
}
|
|
} break;
|
|
|
|
/*
|
|
NEGs: negatives the destination, setting the zero,
|
|
negative, overflow and carry flags appropriate, and extend.
|
|
|
|
NB: since the same logic as SUB is used to calculate overflow,
|
|
and SUB calculates `destination - source`, the NEGs deliberately
|
|
label 'source' and 'destination' differently from Motorola.
|
|
*/
|
|
case Operation::NEGb: {
|
|
const int destination = 0;
|
|
const int source = destination()->halves.low.halves.low;
|
|
const auto result = destination - source;
|
|
destination()->halves.low.halves.low = uint8_t(result);
|
|
|
|
zero_result_ = result & 0xff;
|
|
extend_flag_ = carry_flag_ = decltype(carry_flag_)(result & ~0xff);
|
|
negative_flag_ = result & 0x80;
|
|
overflow_flag_ = sub_overflow() & 0x80;
|
|
} break;
|
|
|
|
case Operation::NEGw: {
|
|
const int destination = 0;
|
|
const int source = destination()->halves.low.full;
|
|
const auto result = destination - source;
|
|
destination()->halves.low.full = uint16_t(result);
|
|
|
|
zero_result_ = result & 0xffff;
|
|
extend_flag_ = carry_flag_ = decltype(carry_flag_)(result & ~0xffff);
|
|
negative_flag_ = result & 0x8000;
|
|
overflow_flag_ = sub_overflow() & 0x8000;
|
|
} break;
|
|
|
|
case Operation::NEGl: {
|
|
const uint64_t destination = 0;
|
|
const uint64_t source = destination()->full;
|
|
const auto result = destination - source;
|
|
destination()->full = uint32_t(result);
|
|
|
|
zero_result_ = uint_fast32_t(result);
|
|
extend_flag_ = carry_flag_ = result >> 32;
|
|
negative_flag_ = result & 0x80000000;
|
|
overflow_flag_ = sub_overflow() & 0x80000000;
|
|
} break;
|
|
|
|
/*
|
|
NEGXs: NEG, with extend.
|
|
*/
|
|
case Operation::NEGXb: {
|
|
const int source = destination()->halves.low.halves.low;
|
|
const int destination = 0;
|
|
const auto result = destination - source - (extend_flag_ ? 1 : 0);
|
|
destination()->halves.low.halves.low = uint8_t(result);
|
|
|
|
zero_result_ |= result & 0xff;
|
|
extend_flag_ = carry_flag_ = decltype(carry_flag_)(result & ~0xff);
|
|
negative_flag_ = result & 0x80;
|
|
overflow_flag_ = sub_overflow() & 0x80;
|
|
} break;
|
|
|
|
case Operation::NEGXw: {
|
|
const int source = destination()->halves.low.full;
|
|
const int destination = 0;
|
|
const auto result = destination - source - (extend_flag_ ? 1 : 0);
|
|
destination()->halves.low.full = uint16_t(result);
|
|
|
|
zero_result_ |= result & 0xffff;
|
|
extend_flag_ = carry_flag_ = decltype(carry_flag_)(result & ~0xffff);
|
|
negative_flag_ = result & 0x8000;
|
|
overflow_flag_ = sub_overflow() & 0x8000;
|
|
} break;
|
|
|
|
case Operation::NEGXl: {
|
|
const uint64_t source = destination()->full;
|
|
const uint64_t destination = 0;
|
|
const auto result = destination - source - (extend_flag_ ? 1 : 0);
|
|
destination()->full = uint32_t(result);
|
|
|
|
zero_result_ |= uint_fast32_t(result);
|
|
extend_flag_ = carry_flag_ = result >> 32;
|
|
negative_flag_ = result & 0x80000000;
|
|
overflow_flag_ = sub_overflow() & 0x80000000;
|
|
} break;
|
|
|
|
/*
|
|
The no-op.
|
|
*/
|
|
case Operation::None:
|
|
break;
|
|
|
|
/*
|
|
LINK and UNLINK help with stack frames, allowing a certain
|
|
amount of stack space to be allocated or deallocated.
|
|
*/
|
|
|
|
case Operation::LINK:
|
|
// Make space for the new long-word value, and set up
|
|
// the proper target address for the stack operations to follow.
|
|
address_[7].full -= 4;
|
|
effective_address_[1].full = address_[7].full;
|
|
|
|
// The current value of the address register will be pushed.
|
|
destination_bus_data_[0].full = source()->full;
|
|
|
|
// The address register will then contain the bottom of the stack,
|
|
// and the stack pointer will be offset.
|
|
source()->full = address_[7].full;
|
|
address_[7].full += u_extend16(prefetch_queue_.halves.low.full);
|
|
break;
|
|
|
|
case Operation::UNLINK:
|
|
address_[7].full = effective_address_[1].full + 2;
|
|
destination()->full = destination_bus_data_[0].full;
|
|
break;
|
|
|
|
/*
|
|
TAS: sets zero and negative depending on the current value of the destination,
|
|
and sets the high bit.
|
|
*/
|
|
|
|
case Operation::TAS:
|
|
overflow_flag_ = carry_flag_ = 0;
|
|
zero_result_ = destination()->halves.low.halves.low;
|
|
negative_flag_ = destination()->halves.low.halves.low & 0x80;
|
|
destination()->halves.low.halves.low |= 0x80;
|
|
break;
|
|
|
|
/*
|
|
Bitwise operators: AND, OR and EOR. All three clear the overflow and carry flags,
|
|
and set zero and negative appropriately.
|
|
*/
|
|
#define op_and(x, y) x &= y
|
|
#define op_or(x, y) x |= y
|
|
#define op_eor(x, y) x ^= y
|
|
|
|
#define bitwise(source, dest, sign_mask, operator) \
|
|
operator(dest, source); \
|
|
overflow_flag_ = carry_flag_ = 0; \
|
|
zero_result_ = dest; \
|
|
negative_flag_ = dest & sign_mask;
|
|
|
|
#define andx(source, dest, sign_mask) bitwise(source, dest, sign_mask, op_and)
|
|
#define eorx(source, dest, sign_mask) bitwise(source, dest, sign_mask, op_eor)
|
|
#define orx(source, dest, sign_mask) bitwise(source, dest, sign_mask, op_or)
|
|
|
|
#define op_bwl(name, op) \
|
|
case Operation::name##b: op(source()->halves.low.halves.low, destination()->halves.low.halves.low, 0x80); break; \
|
|
case Operation::name##w: op(source()->halves.low.full, destination()->halves.low.full, 0x8000); break; \
|
|
case Operation::name##l: op(source()->full, destination()->full, 0x80000000); break;
|
|
|
|
op_bwl(AND, andx);
|
|
op_bwl(EOR, eorx);
|
|
op_bwl(OR, orx);
|
|
|
|
#undef op_bwl
|
|
#undef orx
|
|
#undef eorx
|
|
#undef andx
|
|
#undef bitwise
|
|
#undef op_eor
|
|
#undef op_or
|
|
#undef op_and
|
|
|
|
// NOTs: take the logical inverse, affecting the negative and zero flags.
|
|
case Operation::NOTb:
|
|
destination()->halves.low.halves.low ^= 0xff;
|
|
zero_result_ = destination()->halves.low.halves.low;
|
|
negative_flag_ = zero_result_ & 0x80;
|
|
overflow_flag_ = carry_flag_ = 0;
|
|
break;
|
|
|
|
case Operation::NOTw:
|
|
destination()->halves.low.full ^= 0xffff;
|
|
zero_result_ = destination()->halves.low.full;
|
|
negative_flag_ = zero_result_ & 0x8000;
|
|
overflow_flag_ = carry_flag_ = 0;
|
|
break;
|
|
|
|
case Operation::NOTl:
|
|
destination()->full ^= 0xffffffff;
|
|
zero_result_ = destination()->full;
|
|
negative_flag_ = zero_result_ & 0x80000000;
|
|
overflow_flag_ = carry_flag_ = 0;
|
|
break;
|
|
|
|
#define sbcd() \
|
|
/* Perform the BCD arithmetic by evaluating the two nibbles separately. */ \
|
|
const int unadjusted_result = destination - source - (extend_flag_ ? 1 : 0); \
|
|
int result = (destination & 0xf) - (source & 0xf) - (extend_flag_ ? 1 : 0); \
|
|
if((result & 0x1f) > 0x09) result -= 0x06; \
|
|
result += (destination & 0xf0) - (source & 0xf0); \
|
|
extend_flag_ = carry_flag_ = decltype(carry_flag_)((result & 0x1ff) > 0x99); \
|
|
if(carry_flag_) result -= 0x60; \
|
|
\
|
|
/* Set all flags essentially as if this were normal subtraction. */ \
|
|
zero_result_ |= result & 0xff; \
|
|
negative_flag_ = result & 0x80; \
|
|
overflow_flag_ = unadjusted_result & ~result & 0x80; \
|
|
\
|
|
/* Store the result. */ \
|
|
destination()->halves.low.halves.low = uint8_t(result);
|
|
|
|
/*
|
|
SBCD subtracts the lowest byte of the source from that of the destination using
|
|
BCD arithmetic, obeying the extend flag.
|
|
*/
|
|
case Operation::SBCD: {
|
|
const uint8_t source = source()->halves.low.halves.low;
|
|
const uint8_t destination = destination()->halves.low.halves.low;
|
|
sbcd();
|
|
} break;
|
|
|
|
/*
|
|
NBCD is like SBCD except that the result is 0 - destination rather than
|
|
destination - source.
|
|
*/
|
|
case Operation::NBCD: {
|
|
const uint8_t source = destination()->halves.low.halves.low;
|
|
const uint8_t destination = 0;
|
|
sbcd();
|
|
} break;
|
|
|
|
// EXG and SWAP exchange/swap words or long words.
|
|
|
|
case Operation::EXG: {
|
|
const auto temporary = source()->full;
|
|
source()->full = destination()->full;
|
|
destination()->full = temporary;
|
|
} break;
|
|
|
|
case Operation::SWAP: {
|
|
const auto temporary = destination()->halves.low.full;
|
|
destination()->halves.low.full = destination()->halves.high.full;
|
|
destination()->halves.high.full = temporary;
|
|
|
|
zero_result_ = destination()->full;
|
|
negative_flag_ = temporary & 0x8000;
|
|
overflow_flag_ = carry_flag_ = 0;
|
|
} break;
|
|
|
|
/*
|
|
Shifts and rotates.
|
|
*/
|
|
#define set_neg_zero(v, m) \
|
|
zero_result_ = decltype(zero_result_)(v); \
|
|
negative_flag_ = zero_result_ & decltype(negative_flag_)(m);
|
|
|
|
#define set_neg_zero_overflow(v, m) \
|
|
set_neg_zero(v, m); \
|
|
overflow_flag_ = (decltype(zero_result_)(value) ^ zero_result_) & decltype(overflow_flag_)(m);
|
|
|
|
#define decode_shift_count() \
|
|
int shift_count = (decoded_instruction_.full & 32) ? data_[(decoded_instruction_.full >> 9) & 7].full&63 : ( ((decoded_instruction_.full >> 9)&7) ? ((decoded_instruction_.full >> 9)&7) : 8) ; \
|
|
set_next_microcycle_length(HalfCycles(4 * shift_count));
|
|
|
|
#define set_flags_b(t) set_flags(destination()->halves.low.halves.low, 0x80, t)
|
|
#define set_flags_w(t) set_flags(destination()->halves.low.full, 0x8000, t)
|
|
#define set_flags_l(t) set_flags(destination()->full, 0x80000000, t)
|
|
|
|
#define asl(destination, size) {\
|
|
decode_shift_count(); \
|
|
const auto value = destination; \
|
|
\
|
|
if(!shift_count) { \
|
|
carry_flag_ = overflow_flag_ = 0; \
|
|
} else { \
|
|
destination = (shift_count < size) ? decltype(destination)(value << shift_count) : 0; \
|
|
extend_flag_ = carry_flag_ = decltype(carry_flag_)(value) & decltype(carry_flag_)( (1u << (size - 1)) >> (shift_count - 1) ); \
|
|
\
|
|
if(shift_count >= size) overflow_flag_ = value && (value != decltype(value)(-1)); \
|
|
else { \
|
|
const auto mask = decltype(destination)(0xffffffff << (size - shift_count)); \
|
|
overflow_flag_ = mask & value && ((mask & value) != mask); \
|
|
} \
|
|
} \
|
|
\
|
|
set_neg_zero(destination, 1 << (size - 1)); \
|
|
}
|
|
|
|
case Operation::ASLm: {
|
|
const auto value = destination()->halves.low.full;
|
|
destination()->halves.low.full = uint16_t(value << 1);
|
|
extend_flag_ = carry_flag_ = value & 0x8000;
|
|
set_neg_zero_overflow(destination()->halves.low.full, 0x8000);
|
|
} break;
|
|
case Operation::ASLb: asl(destination()->halves.low.halves.low, 8); break;
|
|
case Operation::ASLw: asl(destination()->halves.low.full, 16); break;
|
|
case Operation::ASLl: asl(destination()->full, 32); break;
|
|
|
|
|
|
|
|
#define asr(destination, size) {\
|
|
decode_shift_count(); \
|
|
const auto value = destination; \
|
|
\
|
|
if(!shift_count) { \
|
|
carry_flag_ = 0; \
|
|
} else { \
|
|
destination = (shift_count < size) ? \
|
|
decltype(destination)(\
|
|
(value >> shift_count) | \
|
|
((value & decltype(value)(1 << (size - 1)) ? 0xffffffff : 0x000000000) << (size - shift_count)) \
|
|
) : \
|
|
decltype(destination)( \
|
|
(value & decltype(value)(1 << (size - 1))) ? 0xffffffff : 0x000000000 \
|
|
); \
|
|
extend_flag_ = carry_flag_ = decltype(carry_flag_)(value) & decltype(carry_flag_)(1 << (shift_count - 1)); \
|
|
} \
|
|
\
|
|
set_neg_zero_overflow(destination, 1 << (size - 1)); \
|
|
}
|
|
|
|
case Operation::ASRm: {
|
|
const auto value = destination()->halves.low.full;
|
|
destination()->halves.low.full = (value&0x8000) | (value >> 1);
|
|
extend_flag_ = carry_flag_ = value & 1;
|
|
set_neg_zero_overflow(destination()->halves.low.full, 0x8000);
|
|
} break;
|
|
case Operation::ASRb: asr(destination()->halves.low.halves.low, 8); break;
|
|
case Operation::ASRw: asr(destination()->halves.low.full, 16); break;
|
|
case Operation::ASRl: asr(destination()->full, 32); break;
|
|
|
|
|
|
#undef set_neg_zero_overflow
|
|
#define set_neg_zero_overflow(v, m) \
|
|
set_neg_zero(v, m); \
|
|
overflow_flag_ = 0;
|
|
|
|
#undef set_flags
|
|
#define set_flags(v, m, t) \
|
|
zero_result_ = v; \
|
|
negative_flag_ = zero_result_ & (m); \
|
|
overflow_flag_ = 0; \
|
|
carry_flag_ = value & (t);
|
|
|
|
#define lsl(destination, size) {\
|
|
decode_shift_count(); \
|
|
const auto value = destination; \
|
|
\
|
|
if(!shift_count) { \
|
|
carry_flag_ = 0; \
|
|
} else { \
|
|
destination = (shift_count < size) ? decltype(destination)(value << shift_count) : 0; \
|
|
extend_flag_ = carry_flag_ = decltype(carry_flag_)(value) & decltype(carry_flag_)( (1u << (size - 1)) >> (shift_count - 1) ); \
|
|
} \
|
|
\
|
|
set_neg_zero_overflow(destination, 1 << (size - 1)); \
|
|
}
|
|
|
|
case Operation::LSLm: {
|
|
const auto value = destination()->halves.low.full;
|
|
destination()->halves.low.full = uint16_t(value << 1);
|
|
extend_flag_ = carry_flag_ = value & 0x8000;
|
|
set_neg_zero_overflow(destination()->halves.low.full, 0x8000);
|
|
} break;
|
|
case Operation::LSLb: lsl(destination()->halves.low.halves.low, 8); break;
|
|
case Operation::LSLw: lsl(destination()->halves.low.full, 16); break;
|
|
case Operation::LSLl: lsl(destination()->full, 32); break;
|
|
|
|
#define lsr(destination, size) {\
|
|
decode_shift_count(); \
|
|
const auto value = destination; \
|
|
\
|
|
if(!shift_count) { \
|
|
carry_flag_ = 0; \
|
|
} else { \
|
|
destination = (shift_count < size) ? (value >> shift_count) : 0; \
|
|
extend_flag_ = carry_flag_ = value & decltype(carry_flag_)(1 << (shift_count - 1)); \
|
|
} \
|
|
\
|
|
set_neg_zero_overflow(destination, 1 << (size - 1)); \
|
|
}
|
|
|
|
case Operation::LSRm: {
|
|
const auto value = destination()->halves.low.full;
|
|
destination()->halves.low.full = value >> 1;
|
|
extend_flag_ = carry_flag_ = value & 1;
|
|
set_neg_zero_overflow(destination()->halves.low.full, 0x8000);
|
|
} break;
|
|
case Operation::LSRb: lsr(destination()->halves.low.halves.low, 8); break;
|
|
case Operation::LSRw: lsr(destination()->halves.low.full, 16); break;
|
|
case Operation::LSRl: lsr(destination()->full, 32); break;
|
|
|
|
#define rol(destination, size) { \
|
|
decode_shift_count(); \
|
|
const auto value = destination; \
|
|
\
|
|
if(!shift_count) { \
|
|
carry_flag_ = 0; \
|
|
} else { \
|
|
shift_count &= (size - 1); \
|
|
destination = decltype(destination)( \
|
|
(value << shift_count) | \
|
|
(value >> (size - shift_count)) \
|
|
); \
|
|
carry_flag_ = decltype(carry_flag_)(destination & 1); \
|
|
} \
|
|
\
|
|
set_neg_zero_overflow(destination, 1 << (size - 1)); \
|
|
}
|
|
|
|
case Operation::ROLm: {
|
|
const auto value = destination()->halves.low.full;
|
|
destination()->halves.low.full = uint16_t((value << 1) | (value >> 15));
|
|
carry_flag_ = destination()->halves.low.full & 1;
|
|
set_neg_zero_overflow(destination()->halves.low.full, 0x8000);
|
|
} break;
|
|
case Operation::ROLb: rol(destination()->halves.low.halves.low, 8); break;
|
|
case Operation::ROLw: rol(destination()->halves.low.full, 16); break;
|
|
case Operation::ROLl: rol(destination()->full, 32); break;
|
|
|
|
|
|
#define ror(destination, size) { \
|
|
decode_shift_count(); \
|
|
const auto value = destination; \
|
|
\
|
|
if(!shift_count) { \
|
|
carry_flag_ = 0; \
|
|
} else { \
|
|
shift_count &= (size - 1); \
|
|
destination = decltype(destination)(\
|
|
(value >> shift_count) | \
|
|
(value << (size - shift_count)) \
|
|
);\
|
|
carry_flag_ = destination & decltype(carry_flag_)(1 << (size - 1)); \
|
|
} \
|
|
\
|
|
set_neg_zero_overflow(destination, 1 << (size - 1)); \
|
|
}
|
|
|
|
case Operation::RORm: {
|
|
const auto value = destination()->halves.low.full;
|
|
destination()->halves.low.full = uint16_t((value >> 1) | (value << 15));
|
|
carry_flag_ = destination()->halves.low.full & 0x8000;
|
|
set_neg_zero_overflow(destination()->halves.low.full, 0x8000);
|
|
} break;
|
|
case Operation::RORb: ror(destination()->halves.low.halves.low, 8); break;
|
|
case Operation::RORw: ror(destination()->halves.low.full, 16); break;
|
|
case Operation::RORl: ror(destination()->full, 32); break;
|
|
|
|
#define roxl(destination, size) { \
|
|
decode_shift_count(); \
|
|
\
|
|
shift_count %= (size + 1); \
|
|
uint64_t compound = uint64_t(destination) | (extend_flag_ ? (1ull << size) : 0); \
|
|
compound = \
|
|
(compound << shift_count) | \
|
|
(compound >> (size + 1 - shift_count)); \
|
|
carry_flag_ = extend_flag_ = decltype(carry_flag_)((compound >> size) & 1); \
|
|
destination = decltype(destination)(compound); \
|
|
\
|
|
set_neg_zero_overflow(destination, 1 << (size - 1)); \
|
|
}
|
|
|
|
|
|
case Operation::ROXLm: {
|
|
const auto value = destination()->halves.low.full;
|
|
destination()->halves.low.full = uint16_t((value << 1) | (extend_flag_ ? 0x0001 : 0x0000));
|
|
extend_flag_ = value & 0x8000;
|
|
set_flags_w(0x8000);
|
|
} break;
|
|
case Operation::ROXLb: roxl(destination()->halves.low.halves.low, 8); break;
|
|
case Operation::ROXLw: roxl(destination()->halves.low.full, 16); break;
|
|
case Operation::ROXLl: roxl(destination()->full, 32); break;
|
|
|
|
#define roxr(destination, size) { \
|
|
decode_shift_count(); \
|
|
\
|
|
shift_count %= (size + 1); \
|
|
uint64_t compound = uint64_t(destination) | (extend_flag_ ? (1ull << size) : 0); \
|
|
compound = \
|
|
(compound >> shift_count) | \
|
|
(compound << (size + 1 - shift_count)); \
|
|
carry_flag_ = extend_flag_ = decltype(carry_flag_)((compound >> size) & 1); \
|
|
destination = decltype(destination)(compound); \
|
|
\
|
|
set_neg_zero_overflow(destination, 1 << (size - 1)); \
|
|
}
|
|
|
|
case Operation::ROXRm: {
|
|
const auto value = destination()->halves.low.full;
|
|
destination()->halves.low.full = (value >> 1) | (extend_flag_ ? 0x8000 : 0x0000);
|
|
extend_flag_ = value & 0x0001;
|
|
set_flags_w(0x0001);
|
|
} break;
|
|
case Operation::ROXRb: roxr(destination()->halves.low.halves.low, 8); break;
|
|
case Operation::ROXRw: roxr(destination()->halves.low.full, 16); break;
|
|
case Operation::ROXRl: roxr(destination()->full, 32); break;
|
|
|
|
#undef roxr
|
|
#undef roxl
|
|
#undef ror
|
|
#undef rol
|
|
#undef asr
|
|
#undef lsr
|
|
#undef lsl
|
|
#undef asl
|
|
|
|
#undef set_flags
|
|
#undef decode_shift_count
|
|
#undef set_flags_b
|
|
#undef set_flags_w
|
|
#undef set_flags_l
|
|
#undef set_neg_zero_overflow
|
|
#undef set_net_zero
|
|
|
|
/*
|
|
RTE and RTR share an implementation.
|
|
*/
|
|
case Operation::RTE_RTR:
|
|
// If this is RTR, patch out the supervisor half of the status register.
|
|
if(decoded_instruction_.full == 0x4e77) {
|
|
const auto current_status = get_status();
|
|
source_bus_data_[0].halves.low.halves.high =
|
|
uint8_t(current_status >> 8);
|
|
}
|
|
set_status(source_bus_data_[0].full);
|
|
break;
|
|
|
|
/*
|
|
TSTs: compare to zero.
|
|
*/
|
|
|
|
case Operation::TSTb:
|
|
carry_flag_ = overflow_flag_ = 0;
|
|
zero_result_ = source()->halves.low.halves.low;
|
|
negative_flag_ = zero_result_ & 0x80;
|
|
break;
|
|
|
|
case Operation::TSTw:
|
|
carry_flag_ = overflow_flag_ = 0;
|
|
zero_result_ = source()->halves.low.full;
|
|
negative_flag_ = zero_result_ & 0x8000;
|
|
break;
|
|
|
|
case Operation::TSTl:
|
|
carry_flag_ = overflow_flag_ = 0;
|
|
zero_result_ = source()->full;
|
|
negative_flag_ = zero_result_ & 0x80000000;
|
|
break;
|
|
|
|
case Operation::STOP:
|
|
set_status(prefetch_queue_.halves.low.full);
|
|
execution_state_ = ExecutionState::Stopped;
|
|
break;
|
|
|
|
/*
|
|
Development period debugging.
|
|
*/
|
|
default:
|
|
std::cerr << "Should do something with program operation " << int(active_program_->operation) << std::endl;
|
|
break;
|
|
}
|
|
#undef sub_overflow
|
|
#undef add_overflow
|
|
break;
|
|
|
|
case int_type(MicroOp::Action::MOVEMtoRComplete): {
|
|
// If this was a word-sized move, perform sign extension.
|
|
if(active_program_->operation == Operation::MOVEMtoRw) {
|
|
auto mask = next_word_;
|
|
int offset = 0;
|
|
while(mask) {
|
|
if(mask&1) {
|
|
const auto target = (offset > 7) ? &address_[offset&7] : &data_[offset];
|
|
target->halves.high.full = (target->halves.low.full & 0x8000) ? 0xffff : 0x0000;
|
|
}
|
|
mask >>= 1;
|
|
++offset;
|
|
}
|
|
}
|
|
|
|
// If the post-increment mode was used, overwrite the source register.
|
|
const auto mode = (decoded_instruction_.full >> 3) & 7;
|
|
if(mode == 3) {
|
|
const auto reg = decoded_instruction_.full & 7;
|
|
address_[reg] = movem_final_address_;
|
|
}
|
|
} break;
|
|
|
|
case int_type(MicroOp::Action::MOVEMtoMComplete): {
|
|
const auto mode = (decoded_instruction_.full >> 3) & 7;
|
|
if(mode == 4) {
|
|
const auto reg = decoded_instruction_.full & 7;
|
|
address_[reg] = movem_final_address_;
|
|
}
|
|
} break;
|
|
|
|
case int_type(MicroOp::Action::PrepareJSR): {
|
|
const auto mode = (decoded_instruction_.full >> 3) & 7;
|
|
// Determine the proper resumption address.
|
|
switch(mode) {
|
|
case 2: destination_bus_data_[0].full = program_counter_.full - 2; break; /* (An) */
|
|
default:
|
|
destination_bus_data_[0].full = program_counter_.full; /* Everything other than (An) */
|
|
break;
|
|
}
|
|
address_[7].full -= 4;
|
|
effective_address_[1].full = address_[7].full;
|
|
} break;
|
|
|
|
case int_type(MicroOp::Action::PrepareBSR):
|
|
destination_bus_data_[0].full = (decoded_instruction_.full & 0xff) ? program_counter_.full - 2 : program_counter_.full;
|
|
address_[7].full -= 4;
|
|
effective_address_[1].full = address_[7].full;
|
|
break;
|
|
|
|
case int_type(MicroOp::Action::PrepareRTS):
|
|
effective_address_[0].full = address_[7].full;
|
|
address_[7].full += 4;
|
|
break;
|
|
|
|
case int_type(MicroOp::Action::PrepareRTE_RTR):
|
|
precomputed_addresses_[0] = address_[7].full + 2;
|
|
precomputed_addresses_[1] = address_[7].full;
|
|
precomputed_addresses_[2] = address_[7].full + 4;
|
|
address_[7].full += 6;
|
|
break;
|
|
|
|
case int_type(MicroOp::Action::PrepareINT):
|
|
// The INT sequence uses the same storage as the TRAP steps, so this'll get
|
|
// the necessary stack work set up.
|
|
populate_trap_steps(0, get_status());
|
|
|
|
// Mutate neessary internal state — effective_address_[0] is exposed
|
|
// on the data bus as the accepted interrupt number during the interrupt
|
|
// acknowledge cycle, with all other bits set, including the low bit as
|
|
// a real 68000 uses the lower data strobe to collect the corresponding vector byte.
|
|
//
|
|
// Cf. M68000 8-/16-/32-BIT MICROPROCESSORS USER'S MANUAL 5.1.4.
|
|
accepted_interrupt_level_ = interrupt_level_ = pending_interrupt_level_;
|
|
pending_interrupt_level_ = 0;
|
|
effective_address_[0].full = 0xfffffff1 | uint32_t(accepted_interrupt_level_ << 1);
|
|
|
|
// Recede the program counter to where it would have been were there no
|
|
// prefetch; that's where the reading stream should pick up upon RTE.
|
|
program_counter_.full -= 4;
|
|
break;
|
|
|
|
case int_type(MicroOp::Action::PrepareINTVector):
|
|
// Let bus error go back to causing exceptions.
|
|
is_starting_interrupt_ = false;
|
|
|
|
// Bus error => spurious interrupt.
|
|
if(bus_error_) {
|
|
effective_address_[0].full = 24 << 2;
|
|
break;
|
|
}
|
|
|
|
// Valid peripheral address => autovectored interrupt.
|
|
if(is_peripheral_address_) {
|
|
effective_address_[0].full = uint32_t(24 + accepted_interrupt_level_) << 2;
|
|
break;
|
|
}
|
|
|
|
// Otherwise, the vector is whatever we were just told it is.
|
|
effective_address_[0].full = uint32_t(source_bus_data_[0].halves.low.halves.low << 2);
|
|
|
|
// printf("Interrupt vector: %06x\n", effective_address_[0].full);
|
|
break;
|
|
|
|
case int_type(MicroOp::Action::CopyNextWord):
|
|
next_word_ = prefetch_queue_.halves.low.full;
|
|
break;
|
|
|
|
// Increments and decrements.
|
|
#define op_add(x, y) x += y
|
|
#define op_sub(x, y) x -= y
|
|
#define Adjust(op, quantity, effect) \
|
|
case int_type(op) | MicroOp::SourceMask: effect(source_address().full, quantity); break; \
|
|
case int_type(op) | MicroOp::DestinationMask: effect(destination_address().full, quantity); break; \
|
|
case int_type(op) | MicroOp::SourceMask | MicroOp::DestinationMask: \
|
|
effect(destination_address().full, quantity); \
|
|
effect(source_address().full, quantity); \
|
|
break;
|
|
|
|
Adjust(MicroOp::Action::Decrement1, 1, op_sub);
|
|
Adjust(MicroOp::Action::Decrement2, 2, op_sub);
|
|
Adjust(MicroOp::Action::Decrement4, 4, op_sub);
|
|
Adjust(MicroOp::Action::Increment1, 1, op_add);
|
|
Adjust(MicroOp::Action::Increment2, 2, op_add);
|
|
Adjust(MicroOp::Action::Increment4, 4, op_add);
|
|
|
|
#undef Adjust
|
|
#undef op_add
|
|
#undef op_sub
|
|
|
|
case int_type(MicroOp::Action::SignExtendWord):
|
|
if(active_micro_op_->action & MicroOp::SourceMask) {
|
|
source()->halves.high.full =
|
|
(source()->halves.low.full & 0x8000) ? 0xffff : 0x0000;
|
|
}
|
|
if(active_micro_op_->action & MicroOp::DestinationMask) {
|
|
destination()->halves.high.full =
|
|
(destination()->halves.low.full & 0x8000) ? 0xffff : 0x0000;
|
|
}
|
|
break;
|
|
|
|
case int_type(MicroOp::Action::SignExtendByte):
|
|
if(active_micro_op_->action & MicroOp::SourceMask) {
|
|
source()->full = (source()->full & 0xff) |
|
|
(source()->full & 0x80) ? 0xffffff : 0x000000;
|
|
}
|
|
if(active_micro_op_->action & MicroOp::DestinationMask) {
|
|
destination()->full = (destination()->full & 0xff) |
|
|
(destination()->full & 0x80) ? 0xffffff : 0x000000;
|
|
}
|
|
break;
|
|
|
|
// 16-bit offset addressing modes.
|
|
|
|
case int_type(MicroOp::Action::CalcD16PC) | MicroOp::SourceMask:
|
|
// The address the low part of the prefetch queue was read from was two bytes ago, hence
|
|
// the subtraction of 2.
|
|
effective_address_[0] = u_extend16(prefetch_queue_.halves.low.full) + program_counter_.full - 2;
|
|
break;
|
|
|
|
case int_type(MicroOp::Action::CalcD16PC) | MicroOp::DestinationMask:
|
|
effective_address_[1] = u_extend16(prefetch_queue_.halves.low.full) + program_counter_.full - 2;
|
|
break;
|
|
|
|
case int_type(MicroOp::Action::CalcD16PC) | MicroOp::SourceMask | MicroOp::DestinationMask:
|
|
// Similar logic applies here to above, but the high part of the prefetch queue was four bytes
|
|
// ago rather than merely two.
|
|
effective_address_[0] = u_extend16(prefetch_queue_.halves.high.full) + program_counter_.full - 4;
|
|
effective_address_[1] = u_extend16(prefetch_queue_.halves.low.full) + program_counter_.full - 2;
|
|
break;
|
|
|
|
case int_type(MicroOp::Action::CalcD16An) | MicroOp::SourceMask:
|
|
effective_address_[0] = u_extend16(prefetch_queue_.halves.low.full) + source_address().full;
|
|
break;
|
|
|
|
case int_type(MicroOp::Action::CalcD16An) | MicroOp::DestinationMask:
|
|
effective_address_[1] = u_extend16(prefetch_queue_.halves.low.full) + destination_address().full;
|
|
break;
|
|
|
|
case int_type(MicroOp::Action::CalcD16An) | MicroOp::SourceMask | MicroOp::DestinationMask:
|
|
effective_address_[0] = u_extend16(prefetch_queue_.halves.high.full) + source_address().full;
|
|
effective_address_[1] = u_extend16(prefetch_queue_.halves.low.full) + destination_address().full;
|
|
break;
|
|
|
|
#define CalculateD8AnXn(data, source, target) {\
|
|
const auto register_index = (data.full >> 12) & 7; \
|
|
const RegisterPair32 &displacement = (data.full & 0x8000) ? address_[register_index] : data_[register_index]; \
|
|
target.full = u_extend8(data.halves.low) + source; \
|
|
\
|
|
if(data.full & 0x800) { \
|
|
target.full += displacement.full; \
|
|
} else { \
|
|
target.full += u_extend16(displacement.halves.low.full); \
|
|
} \
|
|
}
|
|
case int_type(MicroOp::Action::CalcD8AnXn) | MicroOp::SourceMask: {
|
|
CalculateD8AnXn(prefetch_queue_.halves.low, source_address().full, effective_address_[0]);
|
|
} break;
|
|
|
|
case int_type(MicroOp::Action::CalcD8AnXn) | MicroOp::DestinationMask: {
|
|
CalculateD8AnXn(prefetch_queue_.halves.low, destination_address().full, effective_address_[1]);
|
|
} break;
|
|
|
|
case int_type(MicroOp::Action::CalcD8AnXn) | MicroOp::SourceMask | MicroOp::DestinationMask: {
|
|
CalculateD8AnXn(prefetch_queue_.halves.high, source_address().full, effective_address_[0]);
|
|
CalculateD8AnXn(prefetch_queue_.halves.low, destination_address().full, effective_address_[1]);
|
|
} break;
|
|
|
|
case int_type(MicroOp::Action::CalcD8PCXn) | MicroOp::SourceMask: {
|
|
CalculateD8AnXn(prefetch_queue_.halves.low, program_counter_.full - 2, effective_address_[0]);
|
|
} break;
|
|
|
|
case int_type(MicroOp::Action::CalcD8PCXn) | MicroOp::DestinationMask: {
|
|
CalculateD8AnXn(prefetch_queue_.halves.low, program_counter_.full - 2, effective_address_[1]);
|
|
} break;
|
|
|
|
case int_type(MicroOp::Action::CalcD8PCXn) | MicroOp::SourceMask | MicroOp::DestinationMask: {
|
|
CalculateD8AnXn(prefetch_queue_.halves.high, program_counter_.full - 4, effective_address_[0]);
|
|
CalculateD8AnXn(prefetch_queue_.halves.low, program_counter_.full - 2, effective_address_[1]);
|
|
} break;
|
|
|
|
#undef CalculateD8AnXn
|
|
|
|
case int_type(MicroOp::Action::AssembleWordAddressFromPrefetch) | MicroOp::SourceMask:
|
|
effective_address_[0] = u_extend16(prefetch_queue_.halves.low.full);
|
|
break;
|
|
|
|
case int_type(MicroOp::Action::AssembleWordAddressFromPrefetch) | MicroOp::DestinationMask:
|
|
effective_address_[1] = u_extend16(prefetch_queue_.halves.low.full);
|
|
break;
|
|
|
|
case int_type(MicroOp::Action::AssembleLongWordAddressFromPrefetch) | MicroOp::SourceMask:
|
|
effective_address_[0] = prefetch_queue_.full;
|
|
break;
|
|
|
|
case int_type(MicroOp::Action::AssembleLongWordAddressFromPrefetch) | MicroOp::DestinationMask:
|
|
effective_address_[1] = prefetch_queue_.full;
|
|
break;
|
|
|
|
case int_type(MicroOp::Action::AssembleWordDataFromPrefetch) | MicroOp::SourceMask:
|
|
source_bus_data_[0] = prefetch_queue_.halves.low.full;
|
|
break;
|
|
|
|
case int_type(MicroOp::Action::AssembleWordDataFromPrefetch) | MicroOp::DestinationMask:
|
|
destination_bus_data_[0] = prefetch_queue_.halves.low.full;
|
|
break;
|
|
|
|
case int_type(MicroOp::Action::AssembleLongWordDataFromPrefetch) | MicroOp::SourceMask:
|
|
source_bus_data_[0] = prefetch_queue_.full;
|
|
break;
|
|
|
|
case int_type(MicroOp::Action::AssembleLongWordDataFromPrefetch) | MicroOp::DestinationMask:
|
|
destination_bus_data_[0] = prefetch_queue_.full;
|
|
break;
|
|
|
|
case int_type(MicroOp::Action::CopyToEffectiveAddress) | MicroOp::SourceMask:
|
|
effective_address_[0] = source_address();
|
|
break;
|
|
|
|
case int_type(MicroOp::Action::CopyToEffectiveAddress) | MicroOp::DestinationMask:
|
|
effective_address_[1] = destination_address();
|
|
break;
|
|
|
|
case int_type(MicroOp::Action::CopyToEffectiveAddress) | MicroOp::SourceMask | MicroOp::DestinationMask:
|
|
effective_address_[0] = source_address();
|
|
effective_address_[1] = destination_address();
|
|
break;
|
|
}
|
|
|
|
// If we've got to a micro-op that includes bus steps, break out of this loop.
|
|
if(!active_micro_op_->is_terminal()) {
|
|
active_step_ = bus_program;
|
|
if(!active_step_->is_terminal())
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#undef source
|
|
#undef source_address
|
|
#undef destination
|
|
#undef destination_address
|
|
|
|
bus_handler_.flush();
|
|
e_clock_phase_ = (e_clock_phase_ + cycles_run_for) % 10;
|
|
half_cycles_left_to_run_ = remaining_duration - cycles_run_for;
|
|
}
|
|
|
|
template <class T, bool dtack_is_implicit, bool signal_will_perform> ProcessorState Processor<T, dtack_is_implicit, signal_will_perform>::get_state() {
|
|
write_back_stack_pointer();
|
|
|
|
State state;
|
|
memcpy(state.data, data_, sizeof(state.data));
|
|
memcpy(state.address, address_, sizeof(state.address));
|
|
state.user_stack_pointer = stack_pointers_[0].full;
|
|
state.supervisor_stack_pointer = stack_pointers_[1].full;
|
|
state.program_counter = program_counter_.full;
|
|
|
|
state.status = get_status();
|
|
|
|
return state;
|
|
}
|
|
|
|
template <class T, bool dtack_is_implicit, bool signal_will_perform> void Processor<T, dtack_is_implicit, signal_will_perform>::set_state(const ProcessorState &state) {
|
|
memcpy(data_, state.data, sizeof(state.data));
|
|
memcpy(address_, state.address, sizeof(state.address));
|
|
|
|
set_status(state.status);
|
|
|
|
stack_pointers_[0].full = state.user_stack_pointer;
|
|
stack_pointers_[1].full = state.supervisor_stack_pointer;
|
|
address_[7] = stack_pointers_[is_supervisor_];
|
|
}
|
|
|
|
#undef get_status
|
|
#undef set_status
|
|
#undef set_ccr
|
|
#undef get_ccr
|
|
#undef u_extend16
|
|
#undef u_extend8
|
|
#undef s_extend16
|
|
#undef s_extend8
|
|
#undef set_next_microcycle_length
|
|
#undef convert_to_bit_count_16
|
|
|