1
0
mirror of https://github.com/TomHarte/CLK.git synced 2024-11-22 12:33:29 +00:00
CLK/Machines/PCCompatible/PCCompatible.cpp
2023-12-07 10:14:06 -05:00

1192 lines
34 KiB
C++

//
// PCCompatible.cpp
// Clock Signal
//
// Created by Thomas Harte on 15/11/2023.
// Copyright © 2023 Thomas Harte. All rights reserved.
//
#include "PCCompatible.hpp"
#include "CGA.hpp"
#include "DMA.hpp"
#include "KeyboardMapper.hpp"
#include "MDA.hpp"
#include "Memory.hpp"
#include "PIC.hpp"
#include "PIT.hpp"
#include "RTC.hpp"
#include "../../InstructionSets/x86/Decoder.hpp"
#include "../../InstructionSets/x86/Flags.hpp"
#include "../../InstructionSets/x86/Instruction.hpp"
#include "../../InstructionSets/x86/Perform.hpp"
#include "../../Components/8255/i8255.hpp"
#include "../../Components/8272/CommandDecoder.hpp"
#include "../../Components/8272/Results.hpp"
#include "../../Components/8272/Status.hpp"
#include "../../Components/AudioToggle/AudioToggle.hpp"
#include "../../Numeric/RegisterSizes.hpp"
#include "../../Outputs/CRT/CRT.hpp"
#include "../../Outputs/Speaker/Implementation/LowpassSpeaker.hpp"
#include "../../Storage/Disk/Track/TrackSerialiser.hpp"
#include "../../Storage/Disk/Encodings/MFM/Constants.hpp"
#include "../../Storage/Disk/Encodings/MFM/SegmentParser.hpp"
#include "../AudioProducer.hpp"
#include "../KeyboardMachine.hpp"
#include "../MediaTarget.hpp"
#include "../ScanProducer.hpp"
#include "../TimedMachine.hpp"
#include "../../Analyser/Static/PCCompatible/Target.hpp"
#include <array>
#include <iostream>
namespace PCCompatible {
using VideoAdaptor = Analyser::Static::PCCompatible::Target::VideoAdaptor;
template <VideoAdaptor adaptor> struct Adaptor;
template <> struct Adaptor<VideoAdaptor::MDA> {
using type = MDA;
};
template <> struct Adaptor<VideoAdaptor::CGA> {
using type = CGA;
};
class FloppyController {
public:
FloppyController(PIC &pic, DMA &dma, int drive_count) : pic_(pic), dma_(dma) {
// Default: one floppy drive only.
for(int c = 0; c < 4; c++) {
drives_[c].exists = drive_count > c;
}
}
void set_digital_output(uint8_t control) {
// b7, b6, b5, b4: enable motor for drive 4, 3, 2, 1;
// b3: 1 => enable DMA; 0 => disable;
// b2: 1 => enable FDC; 0 => hold at reset;
// b1, b0: drive select (usurps FDC?)
drives_[0].motor = control & 0x10;
drives_[1].motor = control & 0x20;
drives_[2].motor = control & 0x40;
drives_[3].motor = control & 0x80;
if(observer_) {
for(int c = 0; c < 4; c++) {
if(drives_[c].exists) observer_->set_led_status(drive_name(c), drives_[c].motor);
}
}
enable_dma_ = control & 0x08;
const bool hold_reset = !(control & 0x04);
if(!hold_reset && hold_reset_) {
// TODO: add a delay mechanism.
reset();
}
hold_reset_ = hold_reset;
if(hold_reset_) {
pic_.apply_edge<6>(false);
}
}
uint8_t status() const {
return status_.main();
}
void write(uint8_t value) {
decoder_.push_back(value);
if(decoder_.has_command()) {
using Command = Intel::i8272::Command;
switch(decoder_.command()) {
default:
printf("TODO: implement FDC command %d\n", uint8_t(decoder_.command()));
break;
case Command::ReadData: {
printf("FDC: Read from drive %d / head %d / track %d of head %d / track %d / sector %d\n",
decoder_.target().drive,
decoder_.target().head,
drives_[decoder_.target().drive].track,
decoder_.geometry().head,
decoder_.geometry().cylinder,
decoder_.geometry().sector);
status_.begin(decoder_);
// Search for a matching sector.
auto target = decoder_.geometry();
bool complete = false;
while(!complete) {
bool found_sector = false;
for(auto &pair: drives_[decoder_.target().drive].sectors(decoder_.target().head)) {
if(
(pair.second.address.track == target.cylinder) &&
(pair.second.address.sector == target.sector) &&
(pair.second.address.side == target.head) &&
(pair.second.size == target.size)
) {
found_sector = true;
bool wrote_in_full = true;
for(int c = 0; c < 128 << target.size; c++) {
const auto access_result = dma_.write(2, pair.second.samples[0].data()[c]);
switch(access_result) {
default: break;
case AccessResult::NotAccepted:
complete = true;
wrote_in_full = false;
break;
case AccessResult::AcceptedWithEOP:
complete = true;
break;
}
if(access_result != AccessResult::Accepted) {
break;
}
}
if(!wrote_in_full) {
status_.set(Intel::i8272::Status1::OverRun);
status_.set(Intel::i8272::Status0::AbnormalTermination);
break;
}
++target.sector; // TODO: multitrack?
break;
}
}
if(!found_sector) {
status_.set(Intel::i8272::Status1::EndOfCylinder);
status_.set(Intel::i8272::Status0::AbnormalTermination);
break;
}
}
results_.serialise(
status_,
decoder_.geometry().cylinder,
decoder_.geometry().head,
decoder_.geometry().sector,
decoder_.geometry().size);
// TODO: what if head has changed?
drives_[decoder_.target().drive].status = decoder_.drive_head();
drives_[decoder_.target().drive].raised_interrupt = true;
pic_.apply_edge<6>(true);
} break;
case Command::Recalibrate:
drives_[decoder_.target().drive].track = 0;
drives_[decoder_.target().drive].raised_interrupt = true;
drives_[decoder_.target().drive].status = decoder_.target().drive | uint8_t(Intel::i8272::Status0::SeekEnded);
pic_.apply_edge<6>(true);
break;
case Command::Seek:
drives_[decoder_.target().drive].track = decoder_.seek_target();
drives_[decoder_.target().drive].raised_interrupt = true;
drives_[decoder_.target().drive].status = decoder_.drive_head() | uint8_t(Intel::i8272::Status0::SeekEnded);
pic_.apply_edge<6>(true);
break;
case Command::SenseInterruptStatus: {
int c = 0;
for(; c < 4; c++) {
if(drives_[c].raised_interrupt) {
drives_[c].raised_interrupt = false;
status_.set_status0(drives_[c].status);
results_.serialise(status_, drives_[0].track);
}
}
bool any_remaining_interrupts = false;
for(; c < 4; c++) {
any_remaining_interrupts |= drives_[c].raised_interrupt;
}
if(!any_remaining_interrupts) {
pic_.apply_edge<6>(false);
}
} break;
case Command::Specify:
specify_specs_ = decoder_.specify_specs();
break;
// case Command::SenseDriveStatus: {
// } break;
case Command::Invalid:
results_.serialise_none();
break;
}
decoder_.clear();
// If there are any results to provide, set data direction and data ready.
if(!results_.empty()) {
using MainStatus = Intel::i8272::MainStatus;
status_.set(MainStatus::DataIsToProcessor, true);
status_.set(MainStatus::DataReady, true);
status_.set(MainStatus::CommandInProgress, true);
}
}
}
uint8_t read() {
using MainStatus = Intel::i8272::MainStatus;
if(status_.get(MainStatus::DataIsToProcessor)) {
const uint8_t result = results_.next();
if(results_.empty()) {
status_.set(MainStatus::DataIsToProcessor, false);
status_.set(MainStatus::CommandInProgress, false);
}
return result;
}
return 0x80;
}
void set_activity_observer(Activity::Observer *observer) {
observer_ = observer;
for(int c = 0; c < 4; c++) {
if(drives_[c].exists) {
observer_->register_led(drive_name(c), 0);
}
}
}
void set_disk(std::shared_ptr<Storage::Disk::Disk> disk, int drive) {
// if(drives_[drive].has_disk()) {
// // TODO: drive should only transition to unready if it was ready in the first place.
// drives_[drive].status = uint8_t(Intel::i8272::Status0::BecameNotReady);
// drives_[drive].raised_interrupt = true;
// pic_.apply_edge<6>(true);
// }
drives_[drive].set_disk(disk);
}
private:
void reset() {
printf("FDC reset\n");
decoder_.clear();
status_.reset();
// Necessary to pass GlaBIOS' POST test, but: why?
//
// Cf. INT_13_0_2 and the CMP AL, 11000000B following a CALL FDC_WAIT_SENSE.
for(int c = 0; c < 4; c++) {
drives_[c].raised_interrupt = true;
drives_[c].status = uint8_t(Intel::i8272::Status0::BecameNotReady);
}
pic_.apply_edge<6>(true);
using MainStatus = Intel::i8272::MainStatus;
status_.set(MainStatus::DataReady, true);
status_.set(MainStatus::DataIsToProcessor, false);
}
PIC &pic_;
DMA &dma_;
bool hold_reset_ = false;
bool enable_dma_ = false;
Intel::i8272::CommandDecoder decoder_;
Intel::i8272::Status status_;
Intel::i8272::Results results_;
Intel::i8272::CommandDecoder::SpecifySpecs specify_specs_;
struct DriveStatus {
public:
bool raised_interrupt = false;
uint8_t status = 0;
uint8_t track = 0;
bool motor = false;
bool exists = true;
bool has_disk() const {
return bool(disk);
}
void set_disk(std::shared_ptr<Storage::Disk::Disk> image) {
disk = image;
cached.clear();
}
Storage::Encodings::MFM::SectorMap &sectors(bool side) {
if(cached.track == track && cached.side == side) {
return cached.sectors;
}
cached.track = track;
cached.side = side;
cached.sectors.clear();
if(!disk) {
return cached.sectors;
}
auto raw_track = disk->get_track_at_position(
Storage::Disk::Track::Address(
side,
Storage::Disk::HeadPosition(track)
)
);
if(!raw_track) {
return cached.sectors;
}
const bool is_double_density = true; // TODO: use MFM flag here.
auto serialisation = Storage::Disk::track_serialisation(
*raw_track,
is_double_density ? Storage::Encodings::MFM::MFMBitLength : Storage::Encodings::MFM::FMBitLength
);
cached.sectors = Storage::Encodings::MFM::sectors_from_segment(std::move(serialisation), is_double_density);
return cached.sectors;
}
private:
struct {
uint8_t track = 0xff;
bool side;
Storage::Encodings::MFM::SectorMap sectors;
void clear() {
track = 0xff;
sectors.clear();
}
} cached;
std::shared_ptr<Storage::Disk::Disk> disk;
} drives_[4];
static std::string drive_name(int c) {
char name[3] = "A";
name[0] += c;
return std::string("Drive ") + name;
}
Activity::Observer *observer_ = nullptr;
};
class KeyboardController {
public:
KeyboardController(PIC &pic) : pic_(pic) {}
// KB Status Port 61h high bits:
//; 01 - normal operation. wait for keypress, when one comes in,
//; force data line low (forcing keyboard to buffer additional
//; keypresses) and raise IRQ1 high
//; 11 - stop forcing data line low. lower IRQ1 and don't raise it again.
//; drop all incoming keypresses on the floor.
//; 10 - lower IRQ1 and force clock line low, resetting keyboard
//; 00 - force clock line low, resetting keyboard, but on a 01->00 transition,
//; IRQ1 would remain high
void set_mode(uint8_t mode) {
mode_ = Mode(mode);
switch(mode_) {
case Mode::NormalOperation: break;
case Mode::NoIRQsIgnoreInput:
pic_.apply_edge<1>(false);
break;
case Mode::ClearIRQReset:
pic_.apply_edge<1>(false);
[[fallthrough]];
case Mode::Reset:
reset_delay_ = 5; // Arbitrarily.
break;
}
}
void run_for(Cycles cycles) {
if(reset_delay_ <= 0) {
return;
}
reset_delay_ -= cycles.as<int>();
if(reset_delay_ <= 0) {
input_.clear();
post(0xaa);
}
}
uint8_t read() {
pic_.apply_edge<1>(false);
if(input_.empty()) {
return 0;
}
const uint8_t key = input_.front();
input_.erase(input_.begin());
if(!input_.empty()) {
pic_.apply_edge<1>(true);
}
return key;
}
void post(uint8_t value) {
if(mode_ == Mode::NoIRQsIgnoreInput) {
return;
}
input_.push_back(value);
pic_.apply_edge<1>(true);
}
private:
enum class Mode {
NormalOperation = 0b01,
NoIRQsIgnoreInput = 0b11,
ClearIRQReset = 0b10,
Reset = 0b00,
} mode_;
std::vector<uint8_t> input_;
PIC &pic_;
int reset_delay_ = 0;
};
struct PCSpeaker {
PCSpeaker() :
toggle(queue),
speaker(toggle) {}
void update() {
speaker.run_for(queue, cycles_since_update);
cycles_since_update = 0;
}
void set_pit(bool pit_input) {
pit_input_ = pit_input;
set_level();
}
void set_control(bool pit_mask, bool level) {
pit_mask_ = pit_mask;
level_ = level;
set_level();
}
void set_level() {
// TODO: I think pit_mask_ actually acts as the gate input to the PIT.
const bool new_output = (!pit_mask_ | pit_input_) & level_;
if(new_output != output_) {
update();
toggle.set_output(new_output);
output_ = new_output;
}
}
Concurrency::AsyncTaskQueue<false> queue;
Audio::Toggle toggle;
Outputs::Speaker::PullLowpass<Audio::Toggle> speaker;
Cycles cycles_since_update = 0;
bool pit_input_ = false;
bool pit_mask_ = false;
bool level_ = false;
bool output_ = false;
};
class PITObserver {
public:
PITObserver(PIC &pic, PCSpeaker &speaker) : pic_(pic), speaker_(speaker) {}
template <int channel>
void update_output(bool new_level) {
switch(channel) {
default: break;
case 0: pic_.apply_edge<0>(new_level); break;
case 2: speaker_.set_pit(new_level); break;
}
}
private:
PIC &pic_;
PCSpeaker &speaker_;
// TODO:
//
// channel 0 is connected to IRQ 0;
// channel 1 is used for DRAM refresh (presumably connected to DMA?);
// channel 2 is gated by a PPI output and feeds into the speaker.
};
using PIT = i8253<false, PITObserver>;
class i8255PortHandler : public Intel::i8255::PortHandler {
public:
i8255PortHandler(PCSpeaker &speaker, KeyboardController &keyboard, VideoAdaptor adaptor, int drive_count) :
speaker_(speaker), keyboard_(keyboard) {
// High switches:
//
// b3, b2: drive count; 00 = 1, 01 = 2, etc
// b1, b0: video mode (00 = ROM; 01 = CGA40; 10 = CGA80; 11 = MDA)
switch(adaptor) {
default: break;
case VideoAdaptor::MDA: high_switches_ |= 0b11; break;
case VideoAdaptor::CGA: high_switches_ |= 0b10; break; // Assume 80 columns.
}
high_switches_ |= uint8_t(drive_count << 2);
// Low switches:
//
// b3, b2: RAM on motherboard (64 * bit pattern)
// b1: 1 => FPU present; 0 => absent;
// b0: 1 => floppy drive present; 0 => absent.
low_switches_ |= 0b1100; // Assume maximum RAM.
if(drive_count) low_switches_ |= 0xb0001;
}
/// Supplies a hint about the user's display choice. If the high switches haven't been read yet and this is a CGA device,
/// this hint will be used to select between 40- and 80-column default display.
void hint_is_composite(bool composite) {
if(high_switches_observed_) {
return;
}
switch(high_switches_ & 3) {
// Do nothing if a non-CGA card is in use.
case 0b00: case 0b11:
break;
default:
high_switches_ &= ~0b11;
high_switches_ |= composite ? 0b01 : 0b10;
break;
}
}
void set_value(int port, uint8_t value) {
switch(port) {
case 1:
// b7: 0 => enable keyboard read (and IRQ); 1 => don't;
// b6: 0 => hold keyboard clock low; 1 => don't;
// b5: 1 => disable IO check; 0 => don't;
// b4: 1 => disable memory parity check; 0 => don't;
// b3: [5150] cassette motor control; [5160] high or low switches select;
// b2: [5150] high or low switches select; [5160] 1 => disable turbo mode;
// b1, b0: speaker control.
enable_keyboard_ = !(value & 0x80);
keyboard_.set_mode(value >> 6);
use_high_switches_ = value & 0x08;
speaker_.set_control(value & 0x01, value & 0x02);
break;
}
}
uint8_t get_value(int port) {
switch(port) {
case 0:
high_switches_observed_ = true;
return enable_keyboard_ ? keyboard_.read() : uint8_t((high_switches_ << 4) | low_switches_);
// Guesses that switches is high and low combined as below.
case 2:
// b7: 1 => memory parity error; 0 => none;
// b6: 1 => IO channel error; 0 => none;
// b5: timer 2 output; [TODO]
// b4: cassette data input; [TODO]
// b3...b0: whichever of the high and low switches is selected.
high_switches_observed_ |= use_high_switches_;
return
use_high_switches_ ? high_switches_ : low_switches_;
}
return 0;
};
private:
bool high_switches_observed_ = false;
uint8_t high_switches_ = 0;
uint8_t low_switches_ = 0;
bool use_high_switches_ = false;
PCSpeaker &speaker_;
KeyboardController &keyboard_;
bool enable_keyboard_ = false;
};
using PPI = Intel::i8255::i8255<i8255PortHandler>;
template <VideoAdaptor video>
class IO {
public:
IO(PIT &pit, DMA &dma, PPI &ppi, PIC &pic, typename Adaptor<video>::type &card, FloppyController &fdc, RTC &rtc) :
pit_(pit), dma_(dma), ppi_(ppi), pic_(pic), video_(card), fdc_(fdc), rtc_(rtc) {}
template <typename IntT> void out(uint16_t port, IntT value) {
static constexpr uint16_t crtc_base =
video == VideoAdaptor::MDA ? 0x03b0 : 0x03d0;
switch(port) {
default:
if constexpr (std::is_same_v<IntT, uint8_t>) {
printf("Unhandled out: %02x to %04x\n", value, port);
} else {
printf("Unhandled out: %04x to %04x\n", value, port);
}
break;
case 0x0070: rtc_.write<0>(uint8_t(value)); break;
case 0x0071: rtc_.write<1>(uint8_t(value)); break;
// On the XT the NMI can be masked by setting bit 7 on I/O port 0xA0.
case 0x00a0:
printf("TODO: NMIs %s\n", (value & 0x80) ? "masked" : "unmasked");
break;
case 0x0000: dma_.controller.write<0x0>(uint8_t(value)); break;
case 0x0001: dma_.controller.write<0x1>(uint8_t(value)); break;
case 0x0002: dma_.controller.write<0x2>(uint8_t(value)); break;
case 0x0003: dma_.controller.write<0x3>(uint8_t(value)); break;
case 0x0004: dma_.controller.write<0x4>(uint8_t(value)); break;
case 0x0005: dma_.controller.write<0x5>(uint8_t(value)); break;
case 0x0006: dma_.controller.write<0x6>(uint8_t(value)); break;
case 0x0007: dma_.controller.write<0x7>(uint8_t(value)); break;
case 0x0008: dma_.controller.write<0x8>(uint8_t(value)); break;
case 0x0009: dma_.controller.write<0x9>(uint8_t(value)); break;
case 0x000a: dma_.controller.write<0xa>(uint8_t(value)); break;
case 0x000b: dma_.controller.write<0xb>(uint8_t(value)); break;
case 0x000c: dma_.controller.write<0xc>(uint8_t(value)); break;
case 0x000d: dma_.controller.write<0xd>(uint8_t(value)); break;
case 0x000e: dma_.controller.write<0xe>(uint8_t(value)); break;
case 0x000f: dma_.controller.write<0xf>(uint8_t(value)); break;
case 0x0020: pic_.write<0>(uint8_t(value)); break;
case 0x0021: pic_.write<1>(uint8_t(value)); break;
case 0x0040: pit_.write<0>(uint8_t(value)); break;
case 0x0041: pit_.write<1>(uint8_t(value)); break;
case 0x0042: pit_.write<2>(uint8_t(value)); break;
case 0x0043: pit_.set_mode(uint8_t(value)); break;
case 0x0060: case 0x0061: case 0x0062: case 0x0063:
case 0x0064: case 0x0065: case 0x0066: case 0x0067:
case 0x0068: case 0x0069: case 0x006a: case 0x006b:
case 0x006c: case 0x006d: case 0x006e: case 0x006f:
ppi_.write(port, uint8_t(value));
break;
case 0x0080: dma_.pages.set_page<0>(uint8_t(value)); break;
case 0x0081: dma_.pages.set_page<1>(uint8_t(value)); break;
case 0x0082: dma_.pages.set_page<2>(uint8_t(value)); break;
case 0x0083: dma_.pages.set_page<3>(uint8_t(value)); break;
case 0x0084: dma_.pages.set_page<4>(uint8_t(value)); break;
case 0x0085: dma_.pages.set_page<5>(uint8_t(value)); break;
case 0x0086: dma_.pages.set_page<6>(uint8_t(value)); break;
case 0x0087: dma_.pages.set_page<7>(uint8_t(value)); break;
//
// CRTC access block, with slightly laboured 16-bit to 8-bit mapping.
//
case crtc_base + 0: case crtc_base + 2:
case crtc_base + 4: case crtc_base + 6:
if constexpr (std::is_same_v<IntT, uint16_t>) {
video_.template write<0>(uint8_t(value));
video_.template write<1>(uint8_t(value >> 8));
} else {
video_.template write<0>(value);
}
break;
case crtc_base + 1: case crtc_base + 3:
case crtc_base + 5: case crtc_base + 7:
if constexpr (std::is_same_v<IntT, uint16_t>) {
video_.template write<1>(uint8_t(value));
video_.template write<0>(uint8_t(value >> 8));
} else {
video_.template write<1>(value);
}
break;
case crtc_base + 0x8: video_.template write<0x8>(uint8_t(value)); break;
case crtc_base + 0x9: video_.template write<0x9>(uint8_t(value)); break;
case 0x03f2:
fdc_.set_digital_output(uint8_t(value));
break;
case 0x03f4:
printf("TODO: FDC write of %02x at %04x\n", value, port);
break;
case 0x03f5:
fdc_.write(uint8_t(value));
break;
case 0x0278: case 0x0279: case 0x027a:
case 0x0378: case 0x0379: case 0x037a:
case 0x03bc: case 0x03bd: case 0x03be:
// Ignore parallel port accesses.
break;
case 0x02e8: case 0x02e9: case 0x02ea: case 0x02eb:
case 0x02ec: case 0x02ed: case 0x02ee: case 0x02ef:
case 0x02f8: case 0x02f9: case 0x02fa: case 0x02fb:
case 0x02fc: case 0x02fd: case 0x02fe: case 0x02ff:
case 0x03e8: case 0x03e9: case 0x03ea: case 0x03eb:
case 0x03ec: case 0x03ed: case 0x03ee: case 0x03ef:
case 0x03f8: case 0x03f9: case 0x03fa: case 0x03fb:
case 0x03fc: case 0x03fd: case 0x03fe: case 0x03ff:
// Ignore serial port accesses.
break;
}
}
template <typename IntT> IntT in([[maybe_unused]] uint16_t port) {
switch(port) {
default:
printf("Unhandled in: %04x\n", port);
break;
case 0x0000: return dma_.controller.read<0x0>();
case 0x0001: return dma_.controller.read<0x1>();
case 0x0002: return dma_.controller.read<0x2>();
case 0x0003: return dma_.controller.read<0x3>();
case 0x0004: return dma_.controller.read<0x4>();
case 0x0005: return dma_.controller.read<0x5>();
case 0x0006: return dma_.controller.read<0x6>();
case 0x0007: return dma_.controller.read<0x7>();
case 0x0008: return dma_.controller.read<0x8>();
case 0x000d: return dma_.controller.read<0xd>();
case 0x0009: case 0x000b:
case 0x000c: case 0x000f:
// DMA area, but it doesn't respond.
break;
case 0x0020: return pic_.read<0>();
case 0x0021: return pic_.read<1>();
case 0x0040: return pit_.read<0>();
case 0x0041: return pit_.read<1>();
case 0x0042: return pit_.read<2>();
case 0x0060: case 0x0061: case 0x0062: case 0x0063:
case 0x0064: case 0x0065: case 0x0066: case 0x0067:
case 0x0068: case 0x0069: case 0x006a: case 0x006b:
case 0x006c: case 0x006d: case 0x006e: case 0x006f:
return ppi_.read(port);
case 0x0071: return rtc_.read();
case 0x0080: return dma_.pages.page<0>();
case 0x0081: return dma_.pages.page<1>();
case 0x0082: return dma_.pages.page<2>();
case 0x0083: return dma_.pages.page<3>();
case 0x0084: return dma_.pages.page<4>();
case 0x0085: return dma_.pages.page<5>();
case 0x0086: return dma_.pages.page<6>();
case 0x0087: return dma_.pages.page<7>();
case 0x0201: break; // Ignore game port.
case 0x0278: case 0x0279: case 0x027a:
case 0x0378: case 0x0379: case 0x037a:
case 0x03bc: case 0x03bd: case 0x03be:
// Ignore parallel port accesses.
break;
case 0x03f4: return fdc_.status();
case 0x03f5: return fdc_.read();
case 0x03b8:
if constexpr (video == VideoAdaptor::MDA) {
return video_.template read<0x8>();
}
break;
case 0x3da:
if constexpr (video == VideoAdaptor::CGA) {
return video_.template read<0xa>();
}
break;
case 0x02e8: case 0x02e9: case 0x02ea: case 0x02eb:
case 0x02ec: case 0x02ed: case 0x02ee: case 0x02ef:
case 0x02f8: case 0x02f9: case 0x02fa: case 0x02fb:
case 0x02fc: case 0x02fd: case 0x02fe: case 0x02ff:
case 0x03e8: case 0x03e9: case 0x03ea: case 0x03eb:
case 0x03ec: case 0x03ed: case 0x03ee: case 0x03ef:
case 0x03f8: case 0x03f9: case 0x03fa: case 0x03fb:
case 0x03fc: case 0x03fd: case 0x03fe: case 0x03ff:
// Ignore serial port accesses.
break;
}
return 0xff;
}
private:
PIT &pit_;
DMA &dma_;
PPI &ppi_;
PIC &pic_;
typename Adaptor<video>::type &video_;
FloppyController &fdc_;
RTC &rtc_;
};
class FlowController {
public:
FlowController(Registers &registers, Segments &segments) :
registers_(registers), segments_(segments) {}
// Requirements for perform.
void jump(uint16_t address) {
registers_.ip() = address;
}
void jump(uint16_t segment, uint16_t address) {
registers_.cs() = segment;
segments_.did_update(Segments::Source::CS);
registers_.ip() = address;
}
void halt() {
halted_ = true;
}
void wait() {
printf("WAIT ????\n");
}
void repeat_last() {
should_repeat_ = true;
}
// Other actions.
void begin_instruction() {
should_repeat_ = false;
}
bool should_repeat() const {
return should_repeat_;
}
void unhalt() {
halted_ = false;
}
bool halted() const {
return halted_;
}
private:
Registers &registers_;
Segments &segments_;
bool should_repeat_ = false;
bool halted_ = false;
};
template <VideoAdaptor video>
class ConcreteMachine:
public Machine,
public MachineTypes::TimedMachine,
public MachineTypes::AudioProducer,
public MachineTypes::MappedKeyboardMachine,
public MachineTypes::MediaTarget,
public MachineTypes::ScanProducer,
public Activity::Source,
public Configurable::Device
{
static constexpr int DriveCount = 1;
using Video = typename Adaptor<video>::type;
public:
ConcreteMachine(
const Analyser::Static::PCCompatible::Target &target,
const ROMMachine::ROMFetcher &rom_fetcher
) :
keyboard_(pic_),
fdc_(pic_, dma_, DriveCount),
pit_observer_(pic_, speaker_),
ppi_handler_(speaker_, keyboard_, video, DriveCount),
pit_(pit_observer_),
ppi_(ppi_handler_),
context(pit_, dma_, ppi_, pic_, video_, fdc_, rtc_)
{
// Set up DMA source/target.
dma_.set_memory(&context.memory);
// Use clock rate as a MIPS count; keeping it as a multiple or divisor of the PIT frequency is easy.
static constexpr int pit_frequency = 1'193'182;
set_clock_rate(double(pit_frequency));
speaker_.speaker.set_input_rate(double(pit_frequency));
// Fetch the BIOS. [8088 only, for now]
const auto bios = ROM::Name::PCCompatibleGLaBIOS;
const auto tick = ROM::Name::PCCompatibleGLaTICK;
const auto font = Video::FontROM;
ROM::Request request = ROM::Request(bios) && ROM::Request(tick) && ROM::Request(font);
auto roms = rom_fetcher(request);
if(!request.validate(roms)) {
throw ROMMachine::Error::MissingROMs;
}
const auto &bios_contents = roms.find(bios)->second;
context.memory.install(0x10'0000 - bios_contents.size(), bios_contents.data(), bios_contents.size());
const auto &tick_contents = roms.find(tick)->second;
context.memory.install(0xd'0000, tick_contents.data(), tick_contents.size());
// Give the video card something to read from.
const auto &font_contents = roms.find(font)->second;
video_.set_source(context.memory.at(Video::BaseAddress), font_contents);
// ... and insert media.
insert_media(target.media);
}
~ConcreteMachine() {
speaker_.queue.flush();
}
// MARK: - TimedMachine.
void run_for(const Cycles duration) override {
const auto pit_ticks = duration.as_integral();
cpu_divisor_ += pit_ticks;
int ticks = cpu_divisor_ / 3;
cpu_divisor_ %= 3;
while(ticks--) {
//
// First draft: all hardware runs in lockstep, as a multiple or divisor of the PIT frequency.
//
//
// Advance the PIT and audio.
//
pit_.run_for(1);
++speaker_.cycles_since_update;
pit_.run_for(1);
++speaker_.cycles_since_update;
pit_.run_for(1);
++speaker_.cycles_since_update;
//
// Advance CRTC at a more approximate rate.
//
video_.run_for(Cycles(3));
//
// Perform one CPU instruction every three PIT cycles.
// i.e. CPU instruction rate is 1/3 * ~1.19Mhz ~= 0.4 MIPS.
//
keyboard_.run_for(Cycles(1));
// Query for interrupts and apply if pending.
if(pic_.pending() && context.flags.template flag<InstructionSet::x86::Flag::Interrupt>()) {
// Regress the IP if a REP is in-progress so as to resume it later.
if(context.flow_controller.should_repeat()) {
context.registers.ip() = decoded_ip_;
context.flow_controller.begin_instruction();
}
// Signal interrupt.
context.flow_controller.unhalt();
InstructionSet::x86::interrupt(
pic_.acknowledge(),
context
);
}
// Do nothing if halted.
if(context.flow_controller.halted()) {
continue;
}
// Get the next thing to execute.
if(!context.flow_controller.should_repeat()) {
// Decode from the current IP.
decoded_ip_ = context.registers.ip();
const auto remainder = context.memory.next_code();
decoded = decoder.decode(remainder.first, remainder.second);
// If that didn't yield a whole instruction then the end of memory must have been hit;
// continue from the beginning.
if(decoded.first <= 0) {
const auto all = context.memory.all();
decoded = decoder.decode(all.first, all.second);
}
context.registers.ip() += decoded.first;
} else {
context.flow_controller.begin_instruction();
}
/* if(decoded_ip_ >= 0x7c00 && decoded_ip_ < 0x7c00 + 1024) {
const auto next = to_string(decoded, InstructionSet::x86::Model::i8086);
// if(next != previous) {
std::cout << std::hex << decoded_ip_ << " " << next;
if(decoded.second.operation() == InstructionSet::x86::Operation::INT) {
std::cout << " dl:" << std::hex << +context.registers.dl() << "; ";
std::cout << "ah:" << std::hex << +context.registers.ah() << "; ";
std::cout << "ch:" << std::hex << +context.registers.ch() << "; ";
std::cout << "cl:" << std::hex << +context.registers.cl() << "; ";
std::cout << "dh:" << std::hex << +context.registers.dh() << "; ";
std::cout << "es:" << std::hex << +context.registers.es() << "; ";
std::cout << "bx:" << std::hex << +context.registers.bx();
}
std::cout << std::endl;
// previous = next;
// }
}*/
// Execute it.
InstructionSet::x86::perform(
decoded.second,
context
);
}
}
// MARK: - ScanProducer.
void set_scan_target(Outputs::Display::ScanTarget *scan_target) override {
video_.set_scan_target(scan_target);
}
Outputs::Display::ScanStatus get_scaled_scan_status() const override {
return video_.get_scaled_scan_status();
}
// MARK: - AudioProducer.
Outputs::Speaker::Speaker *get_speaker() override {
return &speaker_.speaker;
}
void flush_output(int outputs) final {
if(outputs & Output::Audio) {
speaker_.update();
speaker_.queue.perform();
}
}
// MARK: - MediaTarget
bool insert_media(const Analyser::Static::Media &media) override {
int c = 0;
for(auto &disk : media.disks) {
fdc_.set_disk(disk, c);
c++;
if(c == 4) break;
}
return true;
}
// MARK: - MappedKeyboardMachine.
MappedKeyboardMachine::KeyboardMapper *get_keyboard_mapper() override {
return &keyboard_mapper_;
}
void set_key_state(uint16_t key, bool is_pressed) override {
keyboard_.post(uint8_t(key | (is_pressed ? 0x00 : 0x80)));
}
// MARK: - Activity::Source.
void set_activity_observer(Activity::Observer *observer) final {
fdc_.set_activity_observer(observer);
}
// MARK: - Configuration options.
std::unique_ptr<Reflection::Struct> get_options() override {
auto options = std::make_unique<Options>(Configurable::OptionsType::UserFriendly);
options->output = get_video_signal_configurable();
return options;
}
void set_options(const std::unique_ptr<Reflection::Struct> &str) override {
const auto options = dynamic_cast<Options *>(str.get());
set_video_signal_configurable(options->output);
}
void set_display_type(Outputs::Display::DisplayType display_type) override {
video_.set_display_type(display_type);
ppi_handler_.hint_is_composite(
(display_type == Outputs::Display::DisplayType::CompositeColour) ||
(display_type == Outputs::Display::DisplayType::CompositeMonochrome)
);
}
Outputs::Display::DisplayType get_display_type() const override {
return video_.get_display_type();
}
private:
PIC pic_;
DMA dma_;
PCSpeaker speaker_;
Video video_;
KeyboardController keyboard_;
FloppyController fdc_;
PITObserver pit_observer_;
i8255PortHandler ppi_handler_;
PIT pit_;
PPI ppi_;
RTC rtc_;
PCCompatible::KeyboardMapper keyboard_mapper_;
struct Context {
Context(PIT &pit, DMA &dma, PPI &ppi, PIC &pic, typename Adaptor<video>::type &card, FloppyController &fdc, RTC &rtc) :
segments(registers),
memory(registers, segments),
flow_controller(registers, segments),
io(pit, dma, ppi, pic, card, fdc, rtc)
{
reset();
}
void reset() {
registers.reset();
segments.reset();
}
InstructionSet::x86::Flags flags;
Registers registers;
Segments segments;
Memory memory;
FlowController flow_controller;
IO<video> io;
static constexpr auto model = InstructionSet::x86::Model::i8086;
} context;
// TODO: eliminate use of Decoder8086 and Decoder8086 in gneral in favour of the templated version, as soon
// as whatever error is preventing GCC from picking up Decoder's explicit instantiations becomes apparent.
InstructionSet::x86::Decoder8086 decoder;
// InstructionSet::x86::Decoder<InstructionSet::x86::Model::i8086> decoder;
uint16_t decoded_ip_ = 0;
std::pair<int, InstructionSet::x86::Instruction<false>> decoded;
int cpu_divisor_ = 0;
};
}
using namespace PCCompatible;
// See header; constructs and returns an instance of the Amstrad CPC.
Machine *Machine::PCCompatible(const Analyser::Static::Target *target, const ROMMachine::ROMFetcher &rom_fetcher) {
using Target = Analyser::Static::PCCompatible::Target;
const Target *const pc_target = dynamic_cast<const Target *>(target);
switch(pc_target->adaptor) {
case VideoAdaptor::MDA: return new PCCompatible::ConcreteMachine<VideoAdaptor::MDA>(*pc_target, rom_fetcher);
case VideoAdaptor::CGA: return new PCCompatible::ConcreteMachine<VideoAdaptor::CGA>(*pc_target, rom_fetcher);
default: return nullptr;
}
}
Machine::~Machine() {}