1
0
mirror of https://github.com/TomHarte/CLK.git synced 2024-11-10 08:04:45 +00:00
CLK/Machines/Atari/ST/AtariST.cpp

715 lines
24 KiB
C++

//
// AtariST.cpp
// Clock Signal
//
// Created by Thomas Harte on 03/10/2019.
// Copyright © 2019 Thomas Harte. All rights reserved.
//
#include "AtariST.hpp"
#include "../../CRTMachine.hpp"
#include "../../JoystickMachine.hpp"
#include "../../KeyboardMachine.hpp"
#include "../../MouseMachine.hpp"
#include "../../MediaTarget.hpp"
#include "../../../Activity/Source.hpp"
//#define LOG_TRACE
//bool should_log = false;
#include "../../../Processors/68000/68000.hpp"
#include "../../../Components/AY38910/AY38910.hpp"
#include "../../../Components/68901/MFP68901.hpp"
#include "../../../Components/6850/6850.hpp"
#include "DMAController.hpp"
#include "IntelligentKeyboard.hpp"
#include "Video.hpp"
#include "../../../ClockReceiver/JustInTime.hpp"
#include "../../../ClockReceiver/ForceInline.hpp"
#include "../../../Configurable/StandardOptions.hpp"
#include "../../../Outputs/Speaker/Implementation/LowpassSpeaker.hpp"
#define LOG_PREFIX "[ST] "
#include "../../../Outputs/Log.hpp"
#include "../../Utility/MemoryPacker.hpp"
#include "../../Utility/MemoryFuzzer.hpp"
namespace Atari {
namespace ST {
std::vector<std::unique_ptr<Configurable::Option>> get_options() {
return Configurable::standard_options(
static_cast<Configurable::StandardOptions>(Configurable::DisplayRGB | Configurable::DisplayCompositeColour | Configurable::QuickLoadTape)
);
}
constexpr int CLOCK_RATE = 8021247;
using Target = Analyser::Static::Target;
class ConcreteMachine:
public Atari::ST::Machine,
public CPU::MC68000::BusHandler,
public CRTMachine::Machine,
public ClockingHint::Observer,
public Motorola::ACIA::ACIA::InterruptDelegate,
public Motorola::MFP68901::MFP68901::InterruptDelegate,
public DMAController::Delegate,
public MouseMachine::Machine,
public JoystickMachine::Machine,
public KeyboardMachine::MappedMachine,
public Activity::Source,
public MediaTarget::Machine,
public GI::AY38910::PortHandler,
public Configurable::Device,
public Video::RangeObserver {
public:
ConcreteMachine(const Target &target, const ROMMachine::ROMFetcher &rom_fetcher) :
mc68000_(*this),
keyboard_acia_(Cycles(500000)),
midi_acia_(Cycles(500000)),
ay_(GI::AY38910::Personality::YM2149F, audio_queue_),
speaker_(ay_),
ikbd_(keyboard_acia_->transmit, keyboard_acia_->receive) {
set_clock_rate(CLOCK_RATE);
speaker_.set_input_rate(float(CLOCK_RATE) / 4.0f);
ram_.resize(512 * 1024); // i.e. 512kb
video_->set_ram(reinterpret_cast<uint16_t *>(ram_.data()), ram_.size());
Memory::Fuzz(ram_);
std::vector<ROMMachine::ROM> rom_descriptions = {
{"AtariST", "the UK TOS 1.00 ROM", "tos100.img", 192*1024, 0x1a586c64}
// {"AtariST", "the UK TOS 1.04 ROM", "tos104.img", 192*1024, 0xa50d1d43}
};
const auto roms = rom_fetcher(rom_descriptions);
if(!roms[0]) {
throw ROMMachine::Error::MissingROMs;
}
Memory::PackBigEndian16(*roms[0], rom_);
// Set up basic memory map.
memory_map_[0] = BusDevice::MostlyRAM;
int c = 1;
for(; c < int(ram_.size() >> 16); ++c) memory_map_[c] = BusDevice::RAM;
for(; c < 0x40; ++c) memory_map_[c] = BusDevice::Floating;
for(; c < 0xff; ++c) memory_map_[c] = BusDevice::Unassigned;
const bool is_early_tos = true;
if(is_early_tos) {
rom_start_ = 0xfc0000;
for(c = 0xfc; c < 0xff; ++c) memory_map_[c] = BusDevice::ROM;
} else {
rom_start_ = 0xe00000;
for(c = 0xe0; c < 0xe4; ++c) memory_map_[c] = BusDevice::ROM;
}
memory_map_[0xfa] = memory_map_[0xfb] = BusDevice::Cartridge;
memory_map_[0xff] = BusDevice::IO;
midi_acia_->set_interrupt_delegate(this);
keyboard_acia_->set_interrupt_delegate(this);
midi_acia_->set_clocking_hint_observer(this);
keyboard_acia_->set_clocking_hint_observer(this);
ikbd_.set_clocking_hint_observer(this);
mfp_->set_clocking_hint_observer(this);
dma_->set_clocking_hint_observer(this);
mfp_->set_interrupt_delegate(this);
dma_->set_delegate(this);
ay_.set_port_handler(this);
set_gpip_input();
video_->set_range_observer(this);
// Insert any supplied media.
insert_media(target.media);
}
~ConcreteMachine() {
audio_queue_.flush();
}
// MARK: CRTMachine::Machine
void set_scan_target(Outputs::Display::ScanTarget *scan_target) final {
video_->set_scan_target(scan_target);
}
Outputs::Display::ScanStatus get_scaled_scan_status() const final {
return video_->get_scaled_scan_status();
}
void set_display_type(Outputs::Display::DisplayType display_type) final {
video_->set_display_type(display_type);
}
Outputs::Speaker::Speaker *get_speaker() final {
return &speaker_;
}
void run_for(const Cycles cycles) final {
// Give the keyboard an opportunity to consume any events.
if(!keyboard_needs_clock_) {
ikbd_.run_for(HalfCycles(0));
}
mc68000_.run_for(cycles);
}
// MARK: MC68000::BusHandler
using Microcycle = CPU::MC68000::Microcycle;
HalfCycles perform_bus_operation(const CPU::MC68000::Microcycle &cycle, int is_supervisor) {
// Just in case the last cycle was an interrupt acknowledge or bus error. TODO: find a better solution?
mc68000_.set_is_peripheral_address(false);
mc68000_.set_bus_error(false);
// Advance time.
advance_time(cycle.length);
// Check for assertion of reset.
if(cycle.operation & Microcycle::Reset) {
LOG("Unhandled Reset");
}
// A null cycle leaves nothing else to do.
if(!(cycle.operation & (Microcycle::NewAddress | Microcycle::SameAddress))) return HalfCycles(0);
// An interrupt acknowledge, perhaps?
if(cycle.operation & Microcycle::InterruptAcknowledge) {
// Current implementation: everything other than 6 (i.e. the MFP is autovectored.
const int interrupt_level = cycle.word_address()&7;
if(interrupt_level != 6) {
video_interrupts_pending_ &= ~interrupt_level;
update_interrupt_input();
mc68000_.set_is_peripheral_address(true);
return HalfCycles(0);
} else {
if(cycle.operation & Microcycle::SelectByte) {
const int interrupt = mfp_->acknowledge_interrupt();
if(interrupt != Motorola::MFP68901::MFP68901::NoAcknowledgement) {
cycle.value->halves.low = uint8_t(interrupt);
} else {
// TODO: this should take a while. Find out how long.
mc68000_.set_bus_error(true);
}
}
return HalfCycles(0);
}
}
auto address = cycle.host_endian_byte_address();
// If this is a new strobing of the address signal, test for bus error and pre-DTack delay.
HalfCycles delay(0);
if(cycle.operation & Microcycle::NewAddress) {
// Bus error test.
if(
// Anything unassigned should generate a bus error.
(memory_map_[address >> 16] == BusDevice::Unassigned) ||
// Bus errors also apply to unprivileged access to the first 0x800 bytes, or the IO area.
(!is_supervisor && (address < 0x800 || memory_map_[address >> 16] == BusDevice::IO))
) {
mc68000_.set_bus_error(true);
return delay; // TODO: there should be an extra delay here.
}
// DTack delay rule: if accessing RAM or the shifter, align with the two cycles next available
// for the CPU to access that side of the bus.
if(address < ram_.size() || (address == 0xff8260)) {
// DTack will be implicit; work out how long until that should be,
// and apply bus error constraints.
const int i_phase = bus_phase_.as<int>() & 7;
if(i_phase < 4) {
delay = HalfCycles(4 - i_phase);
advance_time(delay);
}
}
}
uint8_t *memory = nullptr;
switch(memory_map_[address >> 16]) {
default:
case BusDevice::MostlyRAM:
if(address < 8) {
memory = rom_.data();
break;
}
case BusDevice::RAM:
memory = ram_.data();
break;
case BusDevice::ROM:
memory = rom_.data();
address -= rom_start_;
break;
case BusDevice::Floating:
// TODO: provide vapour reads here. But: will these always be of the last video fetch?
case BusDevice::Unassigned:
case BusDevice::Cartridge:
/*
TOS 1.0 appears to attempt to read from the catridge before it has setup
the bus error vector. Therefore I assume no bus error flows.
*/
switch(cycle.operation & (Microcycle::SelectWord | Microcycle::SelectByte | Microcycle::Read)) {
default: break;
case Microcycle::SelectWord | Microcycle::Read:
*cycle.value = 0xffff;
break;
case Microcycle::SelectByte | Microcycle::Read:
cycle.value->halves.low = 0xff;
break;
}
return delay;
case BusDevice::IO:
switch(address & 0xfffe) { // TODO: surely it's going to be even less precise than this?
default:
// assert(false);
case 0x8000:
/* Memory controller configuration:
b0, b1: bank 1
b2, b3: bank 0
00 = 128k
01 = 512k
10 = 2mb
11 = reserved
*/
break;
// Video controls.
case 0x8200: case 0x8202: case 0x8204: case 0x8206:
case 0x8208: case 0x820a: case 0x820c: case 0x820e:
case 0x8210: case 0x8212: case 0x8214: case 0x8216:
case 0x8218: case 0x821a: case 0x821c: case 0x821e:
case 0x8220: case 0x8222: case 0x8224: case 0x8226:
case 0x8228: case 0x822a: case 0x822c: case 0x822e:
case 0x8230: case 0x8232: case 0x8234: case 0x8236:
case 0x8238: case 0x823a: case 0x823c: case 0x823e:
case 0x8240: case 0x8242: case 0x8244: case 0x8246:
case 0x8248: case 0x824a: case 0x824c: case 0x824e:
case 0x8250: case 0x8252: case 0x8254: case 0x8256:
case 0x8258: case 0x825a: case 0x825c: case 0x825e:
case 0x8260: case 0x8262:
if(!cycle.data_select_active()) return delay;
if(cycle.operation & Microcycle::Read) {
cycle.set_value16(video_->read(int(address >> 1)));
} else {
video_->write(int(address >> 1), cycle.value16());
}
break;
// DMA.
case 0x8604: case 0x8606: case 0x8608: case 0x860a: case 0x860c:
if(!cycle.data_select_active()) return delay;
if(cycle.operation & Microcycle::Read) {
cycle.set_value16(dma_->read(int(address >> 1)));
} else {
dma_->write(int(address >> 1), cycle.value16());
}
break;
// Audio.
//
// Re: mirrors, Dan Hollis' hardware register list asserts:
//
// "Note: PSG Registers are now fixed at these addresses. All other addresses are masked out on the Falcon. Any
// writes to the shadow registers $8804-$88FF will cause bus errors.", which I am taking to imply that those shadow
// registers exist on the Atari ST.
case 0x8800: case 0x8802: case 0x8804: case 0x8806: case 0x8808: case 0x880a: case 0x880c: case 0x880e:
case 0x8810: case 0x8812: case 0x8814: case 0x8816: case 0x8818: case 0x881a: case 0x881c: case 0x881e:
case 0x8820: case 0x8822: case 0x8824: case 0x8826: case 0x8828: case 0x882a: case 0x882c: case 0x882e:
case 0x8830: case 0x8832: case 0x8834: case 0x8836: case 0x8838: case 0x883a: case 0x883c: case 0x883e:
case 0x8840: case 0x8842: case 0x8844: case 0x8846: case 0x8848: case 0x884a: case 0x884c: case 0x884e:
case 0x8850: case 0x8852: case 0x8854: case 0x8856: case 0x8858: case 0x885a: case 0x885c: case 0x885e:
case 0x8860: case 0x8862: case 0x8864: case 0x8866: case 0x8868: case 0x886a: case 0x886c: case 0x886e:
case 0x8870: case 0x8872: case 0x8874: case 0x8876: case 0x8878: case 0x887a: case 0x887c: case 0x887e:
case 0x8880: case 0x8882: case 0x8884: case 0x8886: case 0x8888: case 0x888a: case 0x888c: case 0x888e:
case 0x8890: case 0x8892: case 0x8894: case 0x8896: case 0x8898: case 0x889a: case 0x889c: case 0x889e:
case 0x88a0: case 0x88a2: case 0x88a4: case 0x88a6: case 0x88a8: case 0x88aa: case 0x88ac: case 0x88ae:
case 0x88b0: case 0x88b2: case 0x88b4: case 0x88b6: case 0x88b8: case 0x88ba: case 0x88bc: case 0x88be:
case 0x88c0: case 0x88c2: case 0x88c4: case 0x88c6: case 0x88c8: case 0x88ca: case 0x88cc: case 0x88ce:
case 0x88d0: case 0x88d2: case 0x88d4: case 0x88d6: case 0x88d8: case 0x88da: case 0x88dc: case 0x88de:
case 0x88e0: case 0x88e2: case 0x88e4: case 0x88e6: case 0x88e8: case 0x88ea: case 0x88ec: case 0x88ee:
case 0x88f0: case 0x88f2: case 0x88f4: case 0x88f6: case 0x88f8: case 0x88fa: case 0x88fc: case 0x88fe:
if(!cycle.data_select_active()) return delay;
advance_time(HalfCycles(2));
update_audio();
if(cycle.operation & Microcycle::Read) {
ay_.set_control_lines(GI::AY38910::ControlLines(GI::AY38910::BC2 | GI::AY38910::BC1));
cycle.set_value8_high(ay_.get_data_output());
ay_.set_control_lines(GI::AY38910::ControlLines(0));
} else {
// Net effect here: addresses with bit 1 set write to a register,
// addresses with bit 1 clear select a register.
ay_.set_control_lines(GI::AY38910::ControlLines(
GI::AY38910::BC2 | GI::AY38910::BDIR
| ((address&2) ? 0 : GI::AY38910::BC1)
));
ay_.set_data_input(cycle.value8_high());
ay_.set_control_lines(GI::AY38910::ControlLines(0));
}
return delay + HalfCycles(2);
// The MFP block:
case 0xfa00: case 0xfa02: case 0xfa04: case 0xfa06:
case 0xfa08: case 0xfa0a: case 0xfa0c: case 0xfa0e:
case 0xfa10: case 0xfa12: case 0xfa14: case 0xfa16:
case 0xfa18: case 0xfa1a: case 0xfa1c: case 0xfa1e:
case 0xfa20: case 0xfa22: case 0xfa24: case 0xfa26:
case 0xfa28: case 0xfa2a: case 0xfa2c: case 0xfa2e:
case 0xfa30: case 0xfa32: case 0xfa34: case 0xfa36:
case 0xfa38: case 0xfa3a: case 0xfa3c: case 0xfa3e:
if(!cycle.data_select_active()) return delay;
if(cycle.operation & Microcycle::Read) {
cycle.set_value8_low(mfp_->read(int(address >> 1)));
} else {
mfp_->write(int(address >> 1), cycle.value8_low());
}
break;
// ACIAs.
case 0xfc00: case 0xfc02: case 0xfc04: case 0xfc06: {
// Set VPA.
mc68000_.set_is_peripheral_address(!cycle.data_select_active());
if(!cycle.data_select_active()) return delay;
const auto acia_ = (address & 4) ? &midi_acia_ : &keyboard_acia_;
if(cycle.operation & Microcycle::Read) {
cycle.set_value8_high((*acia_)->read(int(address >> 1)));
} else {
(*acia_)->write(int(address >> 1), cycle.value8_high());
}
} break;
}
return HalfCycles(0);
}
// If control has fallen through to here, the access is either a read from ROM, or a read or write to RAM.
switch(cycle.operation & (Microcycle::SelectWord | Microcycle::SelectByte | Microcycle::Read)) {
default:
break;
case Microcycle::SelectWord | Microcycle::Read:
cycle.value->full = *reinterpret_cast<uint16_t *>(&memory[address]);
break;
case Microcycle::SelectByte | Microcycle::Read:
cycle.value->halves.low = memory[address];
break;
case Microcycle::SelectWord:
if(address >= video_range_.low_address && address < video_range_.high_address)
video_.flush();
*reinterpret_cast<uint16_t *>(&memory[address]) = cycle.value->full;
break;
case Microcycle::SelectByte:
if(address >= video_range_.low_address && address < video_range_.high_address)
video_.flush();
memory[address] = cycle.value->halves.low;
break;
}
return HalfCycles(0);
}
void flush() {
dma_.flush();
mfp_.flush();
keyboard_acia_.flush();
midi_acia_.flush();
video_.flush();
update_audio();
audio_queue_.perform();
}
private:
forceinline void advance_time(HalfCycles length) {
// Advance the relevant counters.
cycles_since_audio_update_ += length;
mfp_ += length;
if(dma_clocking_preference_ != ClockingHint::Preference::None)
dma_ += length;
keyboard_acia_ += length;
midi_acia_ += length;
bus_phase_ += length;
// Don't even count time for the keyboard unless it has requested it.
if(keyboard_needs_clock_) {
cycles_since_ikbd_update_ += length;
ikbd_.run_for(cycles_since_ikbd_update_.divide(HalfCycles(512)));
}
// Flush anything that needs real-time updating.
if(!may_defer_acias_) {
keyboard_acia_.flush();
midi_acia_.flush();
}
if(mfp_is_realtime_) {
mfp_.flush();
}
if(dma_clocking_preference_ == ClockingHint::Preference::RealTime) {
dma_.flush();
}
// Update the video output, checking whether a sequence point has been hit.
while(length >= cycles_until_video_event_) {
length -= cycles_until_video_event_;
video_ += cycles_until_video_event_;
cycles_until_video_event_ = video_->get_next_sequence_point();
assert(cycles_until_video_event_ > HalfCycles(0));
mfp_->set_timer_event_input(1, video_->display_enabled());
update_interrupt_input();
}
cycles_until_video_event_ -= length;
video_ += length;
}
void update_audio() {
speaker_.run_for(audio_queue_, cycles_since_audio_update_.divide_cycles(Cycles(4)));
}
CPU::MC68000::Processor<ConcreteMachine, true> mc68000_;
HalfCycles bus_phase_;
JustInTimeActor<Video> video_;
HalfCycles cycles_until_video_event_;
// The MFP runs at 819200/2673749ths of the CPU clock rate.
JustInTimeActor<Motorola::MFP68901::MFP68901, 819200, 2673749> mfp_;
JustInTimeActor<Motorola::ACIA::ACIA, 16> keyboard_acia_;
JustInTimeActor<Motorola::ACIA::ACIA, 16> midi_acia_;
Concurrency::DeferringAsyncTaskQueue audio_queue_;
GI::AY38910::AY38910<false> ay_;
Outputs::Speaker::LowpassSpeaker<GI::AY38910::AY38910<false>> speaker_;
HalfCycles cycles_since_audio_update_;
JustInTimeActor<DMAController> dma_;
HalfCycles cycles_since_ikbd_update_;
IntelligentKeyboard ikbd_;
std::vector<uint8_t> ram_;
std::vector<uint8_t> rom_;
uint32_t rom_start_ = 0;
enum class BusDevice {
/// A mostly RAM page is one that returns ROM for the first 8 bytes, RAM elsewhere.
MostlyRAM,
/// Allows reads and writes to ram_.
RAM,
/// Nothing is mapped to this area, and it also doesn't trigger an exception upon access.
Floating,
/// Allows reading from rom_; writes do nothing.
ROM,
/// Allows interaction with a cartrige_.
Cartridge,
/// Marks the IO page, in which finer decoding will occur.
IO,
/// An unassigned page has nothing below it, in a way that triggers exceptions.
Unassigned
};
BusDevice memory_map_[256];
// MARK: - Clocking Management.
bool may_defer_acias_ = true;
bool keyboard_needs_clock_ = false;
bool mfp_is_realtime_ = false;
ClockingHint::Preference dma_clocking_preference_ = ClockingHint::Preference::None;
void set_component_prefers_clocking(ClockingHint::Source *component, ClockingHint::Preference clocking) final {
// This is being called by one of the components; avoid any time flushing here as that's
// already dealt with (and, just to be absolutely sure, to avoid recursive mania).
may_defer_acias_ =
(keyboard_acia_.last_valid()->preferred_clocking() != ClockingHint::Preference::RealTime) &&
(midi_acia_.last_valid()->preferred_clocking() != ClockingHint::Preference::RealTime);
keyboard_needs_clock_ = ikbd_.preferred_clocking() != ClockingHint::Preference::None;
mfp_is_realtime_ = mfp_.last_valid()->preferred_clocking() == ClockingHint::Preference::RealTime;
dma_clocking_preference_ = dma_.last_valid()->preferred_clocking();
}
// MARK: - GPIP input.
void acia6850_did_change_interrupt_status(Motorola::ACIA::ACIA *) final {
set_gpip_input();
}
void dma_controller_did_change_output(DMAController *) final {
set_gpip_input();
// Filty hack, here! Should: set the 68000's bus request line. But until
// that's implemented, just offers magical zero-cost DMA insertion and
// extrication.
if(dma_->get_bus_request_line()) {
dma_->bus_grant(reinterpret_cast<uint16_t *>(ram_.data()), ram_.size() >> 1);
}
}
void set_gpip_input() {
/*
Atari ST GPIP bits:
GPIP 7: monochrome monitor detect
GPIP 6: RS-232 ring indicator
GPIP 5: FD/HD interrupt
GPIP 4: keyboard/MIDI interrupt
GPIP 3: unused
GPIP 2: RS-232 clear to send
GPIP 1: RS-232 carrier detect
GPIP 0: centronics busy
*/
mfp_->set_port_input(
0x80 | // b7: Monochrome monitor detect (0 = is monochrome).
0x40 | // b6: RS-232 ring indicator.
(dma_->get_interrupt_line() ? 0x00 : 0x20) | // b5: FD/HS interrupt (0 = interrupt requested).
((keyboard_acia_->get_interrupt_line() || midi_acia_->get_interrupt_line()) ? 0x00 : 0x10) | // b4: Keyboard/MIDI interrupt (0 = interrupt requested).
0x08 | // b3: Unused
0x04 | // b2: RS-232 clear to send.
0x02 | // b1 : RS-232 carrier detect.
0x00 // b0: Centronics busy (1 = busy).
);
}
// MARK - MFP input.
void mfp68901_did_change_interrupt_status(Motorola::MFP68901::MFP68901 *mfp) final {
update_interrupt_input();
}
int video_interrupts_pending_ = 0;
bool previous_hsync_ = false, previous_vsync_ = false;
void update_interrupt_input() {
// Complete guess: set video interrupts pending if/when hsync of vsync
// go inactive. Reset upon IACK.
const bool hsync = video_.last_valid()->hsync();
const bool vsync = video_.last_valid()->vsync();
if(previous_hsync_ != hsync && previous_hsync_) {
video_interrupts_pending_ |= 2;
}
if(previous_vsync_ != vsync && previous_vsync_) {
video_interrupts_pending_ |= 4;
}
previous_vsync_ = vsync;
previous_hsync_ = hsync;
if(mfp_->get_interrupt_line()) {
mc68000_.set_interrupt_level(6);
} else if(video_interrupts_pending_ & 4) {
mc68000_.set_interrupt_level(4);
} else if(video_interrupts_pending_ & 2) {
mc68000_.set_interrupt_level(2);
} else {
mc68000_.set_interrupt_level(0);
}
}
// MARK: - MouseMachine
Inputs::Mouse &get_mouse() final {
return ikbd_;
}
// MARK: - KeyboardMachine
void set_key_state(uint16_t key, bool is_pressed) final {
ikbd_.set_key_state(Key(key), is_pressed);
}
IntelligentKeyboard::KeyboardMapper keyboard_mapper_;
KeyboardMapper *get_keyboard_mapper() final {
return &keyboard_mapper_;
}
// MARK: - JoystickMachine
const std::vector<std::unique_ptr<Inputs::Joystick>> &get_joysticks() final {
return ikbd_.get_joysticks();
}
// MARK: - AYPortHandler
void set_port_output(bool port_b, uint8_t value) final {
if(port_b) {
// TODO: ?
} else {
/*
Port A:
b7: reserved
b6: "freely usable output (monitor jack)"
b5: centronics strobe
b4: RS-232 DTR output
b3: RS-232 RTS output
b2: select floppy drive 1
b1: select floppy drive 0
b0: "page choice signal for double-sided floppy drive"
*/
dma_->set_floppy_drive_selection(!(value & 2), !(value & 4), !(value & 1));
}
}
// MARK: - MediaTarget
bool insert_media(const Analyser::Static::Media &media) final {
size_t c = 0;
for(const auto &disk: media.disks) {
dma_->set_floppy_disk(disk, c);
++c;
if(c == 2) break;
}
return true;
}
// MARK: - Activity Source
void set_activity_observer(Activity::Observer *observer) final {
dma_->set_activity_observer(observer);
}
// MARK: - Video Range
Video::Range video_range_;
void video_did_change_access_range(Video *video) final {
video_range_ = video->get_memory_access_range();
}
// MARK: - Configuration options.
std::vector<std::unique_ptr<Configurable::Option>> get_options() final {
return Atari::ST::get_options();
}
void set_selections(const Configurable::SelectionSet &selections_by_option) final {
Configurable::Display display;
if(Configurable::get_display(selections_by_option, display)) {
set_video_signal_configurable(display);
}
}
Configurable::SelectionSet get_accurate_selections() final {
Configurable::SelectionSet selection_set;
Configurable::append_display_selection(selection_set, Configurable::Display::CompositeColour);
return selection_set;
}
Configurable::SelectionSet get_user_friendly_selections() final {
Configurable::SelectionSet selection_set;
Configurable::append_display_selection(selection_set, Configurable::Display::RGB);
return selection_set;
}
};
}
}
using namespace Atari::ST;
Machine *Machine::AtariST(const Analyser::Static::Target *target, const ROMMachine::ROMFetcher &rom_fetcher) {
return new ConcreteMachine(*target, rom_fetcher);
}
Machine::~Machine() {}