1
0
mirror of https://github.com/TomHarte/CLK.git synced 2024-12-11 15:49:38 +00:00
CLK/ClockReceiver/ClockReceiver.hpp
2024-11-29 22:12:57 -05:00

299 lines
9.0 KiB
C++

//
// ClockReceiver.hpp
// Clock Signal
//
// Created by Thomas Harte on 22/07/2017.
// Copyright 2017 Thomas Harte. All rights reserved.
//
#pragma once
#include "ForceInline.hpp"
#include <algorithm>
#include <cstdint>
#include <limits>
/*
Informal pattern for all classes that run from a clock cycle:
Each will implement either or both of run_for(Cycles) and run_for(HalfCycles), as
is appropriate.
Callers that are accumulating HalfCycles but want to talk to receivers that implement
only run_for(Cycles) can use HalfCycle.flush_cycles if they have appropriate storage, or
can wrap the receiver in HalfClockReceiver in order automatically to bind half-cycle
storage to it.
Alignment rule:
run_for(Cycles) may be called only after an even number of half cycles. E.g. the following
sequence will have undefined results:
run_for(HalfCycles(1))
run_for(Cycles(1))
An easy way to ensure this as a caller is to pick only one of run_for(Cycles) and
run_for(HalfCycles) to use.
Reasoning:
Users of this template may with to implement run_for(Cycles) and run_for(HalfCycles)
where there is a need to implement at half-cycle precision but a faster execution
path can be offered for full-cycle precision. Those users are permitted to assume
phase in run_for(Cycles) and should do so to be compatible with callers that use
only run_for(Cycles).
Corollary:
Starting from nothing, the first run_for(HalfCycles(1)) will do the **first** half
of a full cycle. The second will do the second half. Etc.
*/
/*!
Provides a class that wraps a plain int, providing most of the basic arithmetic and
Boolean operators, but forcing callers and receivers to be explicit as to usage.
*/
template <class T> class WrappedInt {
public:
using IntType = int64_t;
forceinline constexpr WrappedInt(IntType l) noexcept : length_(l) {}
forceinline constexpr WrappedInt() noexcept : length_(0) {}
forceinline T &operator =(const T &rhs) {
length_ = rhs.length_;
return *this;
}
forceinline T &operator +=(const T &rhs) {
length_ += rhs.length_;
return *static_cast<T *>(this);
}
forceinline T &operator -=(const T &rhs) {
length_ -= rhs.length_;
return *static_cast<T *>(this);
}
forceinline T &operator ++() {
++ length_;
return *static_cast<T *>(this);
}
forceinline T &operator ++(int) {
length_ ++;
return *static_cast<T *>(this);
}
forceinline T &operator --() {
-- length_;
return *static_cast<T *>(this);
}
forceinline T &operator --(int) {
length_ --;
return *static_cast<T *>(this);
}
forceinline T &operator *=(const T &rhs) {
length_ *= rhs.length_;
return *static_cast<T *>(this);
}
forceinline T &operator /=(const T &rhs) {
length_ /= rhs.length_;
return *static_cast<T *>(this);
}
forceinline T &operator %=(const T &rhs) {
length_ %= rhs.length_;
return *static_cast<T *>(this);
}
forceinline T &operator &=(const T &rhs) {
length_ &= rhs.length_;
return *static_cast<T *>(this);
}
forceinline constexpr T operator +(const T &rhs) const { return T(length_ + rhs.length_); }
forceinline constexpr T operator -(const T &rhs) const { return T(length_ - rhs.length_); }
forceinline constexpr T operator *(const T &rhs) const { return T(length_ * rhs.length_); }
forceinline constexpr T operator /(const T &rhs) const { return T(length_ / rhs.length_); }
forceinline constexpr T operator %(const T &rhs) const { return T(length_ % rhs.length_); }
forceinline constexpr T operator &(const T &rhs) const { return T(length_ & rhs.length_); }
forceinline constexpr T operator -() const { return T(- length_); }
forceinline constexpr bool operator <(const T &rhs) const { return length_ < rhs.length_; }
forceinline constexpr bool operator >(const T &rhs) const { return length_ > rhs.length_; }
forceinline constexpr bool operator <=(const T &rhs) const { return length_ <= rhs.length_; }
forceinline constexpr bool operator >=(const T &rhs) const { return length_ >= rhs.length_; }
forceinline constexpr bool operator ==(const T &rhs) const { return length_ == rhs.length_; }
forceinline constexpr bool operator !=(const T &rhs) const { return length_ != rhs.length_; }
forceinline constexpr bool operator !() const { return !length_; }
// bool operator () is not supported because it offers an implicit cast to int,
// which is prone silently to permit misuse.
/// @returns The underlying int, converted to an integral type of your choosing, clamped to that int's range.
template<typename Type = IntType> forceinline constexpr Type as() const {
if constexpr (sizeof(Type) == sizeof(IntType)) {
if constexpr (std::is_same_v<Type, IntType>) {
return length_;
} else if constexpr (std::is_signed_v<Type>) {
// Both integers are the same size, but a signed result is being asked for
// from an unsigned original.
return length_ > Type(std::numeric_limits<Type>::max()) ?
Type(std::numeric_limits<Type>::max()) : Type(length_);
} else {
// An unsigned result is being asked for from a signed original.
return length_ < 0 ? 0 : Type(length_);
}
}
const auto clamped = std::clamp(
length_,
IntType(std::numeric_limits<Type>::min()),
IntType(std::numeric_limits<Type>::max())
);
return Type(clamped);
}
/// @returns The underlying int, in its native form.
forceinline constexpr IntType as_integral() const { return length_; }
/*!
Severs from @c this the effect of dividing by @c divisor; @c this will end up with
the value of @c this modulo @c divisor and @c divided by @c divisor is returned.
*/
template <typename Result = T> forceinline Result divide(const T &divisor) {
Result r;
static_cast<T *>(this)->fill(r, divisor);
return r;
}
/*!
Flushes the value in @c this. The current value is returned, and the internal value
is reset to zero.
*/
template <typename Result> Result flush() {
// Jiggery pokery here; switching to function overloading avoids
// the namespace-level requirement for template specialisation.
Result r;
static_cast<T *>(this)->fill(r);
return r;
}
// operator int() is deliberately not provided, to avoid accidental subtitution of
// classes that use this template.
protected:
IntType length_;
};
/// Describes an integer number of whole cycles: pairs of clock signal transitions.
class Cycles: public WrappedInt<Cycles> {
public:
forceinline constexpr Cycles(IntType l) noexcept : WrappedInt<Cycles>(l) {}
forceinline constexpr Cycles() noexcept : WrappedInt<Cycles>() {}
forceinline static constexpr Cycles max() {
return Cycles(std::numeric_limits<IntType>::max());
}
private:
friend WrappedInt;
void fill(Cycles &result) {
result.length_ = length_;
length_ = 0;
}
void fill(Cycles &result, const Cycles &divisor) {
result.length_ = length_ / divisor.length_;
length_ %= divisor.length_;
}
};
/// Describes an integer number of half cycles: single clock signal transitions.
class HalfCycles: public WrappedInt<HalfCycles> {
public:
forceinline constexpr HalfCycles(IntType l) noexcept : WrappedInt<HalfCycles>(l) {}
forceinline constexpr HalfCycles() noexcept : WrappedInt<HalfCycles>() {}
forceinline static constexpr HalfCycles max() {
return HalfCycles(std::numeric_limits<IntType>::max());
}
forceinline constexpr HalfCycles(const Cycles &cycles) noexcept :
WrappedInt<HalfCycles>(cycles.as_integral() * 2) {}
/// @returns The number of whole cycles completely covered by this span of half cycles.
forceinline constexpr Cycles cycles() const {
return Cycles(length_ >> 1);
}
/*!
Severs from @c this the effect of dividing by @c divisor; @c this will end up with
the value of @c this modulo @c divisor . @c this divided by @c divisor is returned.
*/
forceinline Cycles divide_cycles(const Cycles &divisor) {
const HalfCycles half_divisor = HalfCycles(divisor);
const Cycles result(length_ / half_divisor.length_);
length_ %= half_divisor.length_;
return result;
}
/*!
Equivalent to @c divide_cycles(Cycles(1)) but faster.
*/
forceinline Cycles divide_cycles() {
const Cycles result(length_ >> 1);
length_ &= 1;
return result;
}
private:
friend WrappedInt;
void fill(Cycles &result) {
result = Cycles(length_ >> 1);
length_ &= 1;
}
void fill(HalfCycles &result) {
result.length_ = length_;
length_ = 0;
}
void fill(Cycles &result, const HalfCycles &divisor) {
result = Cycles(length_ / (divisor.length_ << 1));
length_ %= (divisor.length_ << 1);
}
void fill(HalfCycles &result, const HalfCycles &divisor) {
result.length_ = length_ / divisor.length_;
length_ %= divisor.length_;
}
};
// Create a specialisation of WrappedInt::flush for converting HalfCycles to Cycles
// without losing the fractional part.
/*!
If a component implements only run_for(Cycles), an owner can wrap it in HalfClockReceiver
automatically to gain run_for(HalfCycles).
*/
template <class T> class HalfClockReceiver: public T {
public:
using T::T;
forceinline void run_for(const HalfCycles half_cycles) {
half_cycles_ += half_cycles;
T::run_for(half_cycles_.flush<Cycles>());
}
private:
HalfCycles half_cycles_;
};