1
0
mirror of https://github.com/TomHarte/CLK.git synced 2024-11-25 01:32:55 +00:00
CLK/Machines/Apple/Macintosh/Audio.cpp
2024-05-29 21:51:07 -04:00

101 lines
3.4 KiB
C++

//
// Audio.cpp
// Clock Signal
//
// Created by Thomas Harte on 31/05/2019.
// Copyright © 2019 Thomas Harte. All rights reserved.
//
#include "Audio.hpp"
#include <algorithm>
using namespace Apple::Macintosh;
namespace {
// The sample_length is coupled with the clock rate selected within the Macintosh proper;
// as per the header-declaration a divide-by-two clock is expected to arrive here.
const std::size_t sample_length = 352 / 2;
}
Audio::Audio(Concurrency::AsyncTaskQueue<false> &task_queue) : task_queue_(task_queue) {}
// MARK: - Inputs
void Audio::post_sample(uint8_t sample) {
// Store sample directly indexed by current write pointer; this ensures that collected samples
// directly map to volume and enabled/disabled states.
sample_queue_.buffer[sample_queue_.write_pointer].store(sample, std::memory_order_relaxed);
sample_queue_.write_pointer = (sample_queue_.write_pointer + 1) % sample_queue_.buffer.size();
}
void Audio::set_volume(int volume) {
// Do nothing if the volume hasn't changed.
if(posted_volume_ == volume) return;
posted_volume_ = volume;
// Post the volume change as a deferred event.
task_queue_.enqueue([this, volume] () {
volume_ = volume;
set_volume_multiplier();
});
}
void Audio::set_enabled(bool on) {
// Do nothing if the mask hasn't changed.
if(posted_enable_mask_ == int(on)) return;
posted_enable_mask_ = int(on);
// Post the enabled mask change as a deferred event.
task_queue_.enqueue([this, on] () {
enabled_mask_ = int(on);
set_volume_multiplier();
});
}
// MARK: - Output generation
bool Audio::is_zero_level() const {
return !volume_ || !enabled_mask_;
}
void Audio::set_sample_volume_range(std::int16_t range) {
// Some underflow here doesn't really matter.
output_volume_ = range / (7 * 255);
set_volume_multiplier();
}
void Audio::set_volume_multiplier() {
volume_multiplier_ = int16_t(output_volume_ * volume_ * enabled_mask_);
}
template <Outputs::Speaker::Action action>
void Audio::apply_samples(std::size_t number_of_samples, Outputs::Speaker::MonoSample *target) {
// TODO: the implementation below acts as if the hardware uses pulse-amplitude modulation;
// in fact it uses pulse-width modulation. But the scale for pulses isn't specified, so
// that's something to return to.
while(number_of_samples) {
// Determine how many output samples will be at the same level.
const auto cycles_left_in_sample = std::min(number_of_samples, sample_length - subcycle_offset_);
// Determine the output level, and output that many samples.
const int16_t output_level = volume_multiplier_ * (int16_t(sample_queue_.buffer[sample_queue_.read_pointer].load(std::memory_order_relaxed)) - 128);
Outputs::Speaker::fill<action>(target, target + cycles_left_in_sample, output_level);
target += cycles_left_in_sample;
// Advance the sample pointer.
subcycle_offset_ += cycles_left_in_sample;
sample_queue_.read_pointer = (sample_queue_.read_pointer + (subcycle_offset_ / sample_length)) % sample_queue_.buffer.size();
subcycle_offset_ %= sample_length;
// Decreate the number of samples left to write.
number_of_samples -= cycles_left_in_sample;
}
}
template void Audio::apply_samples<Outputs::Speaker::Action::Mix>(std::size_t, Outputs::Speaker::MonoSample *);
template void Audio::apply_samples<Outputs::Speaker::Action::Store>(std::size_t, Outputs::Speaker::MonoSample *);
template void Audio::apply_samples<Outputs::Speaker::Action::Ignore>(std::size_t, Outputs::Speaker::MonoSample *);