1
0
mirror of https://github.com/TomHarte/CLK.git synced 2024-06-30 22:29:56 +00:00
CLK/Outputs/OpenGL/ScanTargetGLSLFragments.cpp
2018-11-15 21:21:54 -05:00

229 lines
5.8 KiB
C++

//
// ScanTargetVertexArrayAttributs.cpp
// Clock Signal
//
// Created by Thomas Harte on 11/11/2018.
// Copyright © 2018 Thomas Harte. All rights reserved.
//
#include "ScanTarget.hpp"
using namespace Outputs::Display::OpenGL;
std::string ScanTarget::glsl_globals(ShaderType type) {
switch(type) {
case ShaderType::Scan:
return
"#version 150\n"
"uniform vec2 scale;"
"uniform float rowHeight;"
"uniform mat3 lumaChromaToRGB;"
"uniform mat3 rgbToLumaChroma;"
"uniform float processingWidth;"
"in vec2 startPoint;"
"in float startDataX;"
"in float startCompositeAngle;"
"in vec2 endPoint;"
"in float endDataX;"
"in float endCompositeAngle;"
"in float dataY;"
"in float lineY;";
case ShaderType::Line:
return
"#version 150\n"
"uniform vec2 scale;"
"uniform float rowHeight;"
"uniform float processingWidth;"
"in vec2 startPoint;"
"in vec2 endPoint;"
"in float lineY;";
}
}
std::string ScanTarget::glsl_default_vertex_shader(ShaderType type) {
switch(type) {
case ShaderType::Scan:
return
"out vec2 textureCoordinate;"
"uniform usampler2D textureName;"
"void main(void) {"
"float lateral = float(gl_VertexID & 1);"
"float longitudinal = float((gl_VertexID & 2) >> 1);"
"textureCoordinate = vec2(mix(startDataX, endDataX, lateral), dataY) / textureSize(textureName, 0);"
"vec2 eyePosition = vec2(mix(startPoint.x, endPoint.x, lateral) * processingWidth, lineY + longitudinal) / vec2(scale.x, 2048.0);"
"gl_Position = vec4(eyePosition*2 - vec2(1.0), 0.0, 1.0);"
"}";
case ShaderType::Line:
return
"out vec2 textureCoordinate;"
"uniform sampler2D textureName;"
"void main(void) {"
"float lateral = float(gl_VertexID & 1);"
"float longitudinal = float((gl_VertexID & 2) >> 1);"
"textureCoordinate = vec2(lateral * processingWidth, lineY) / vec2(1.0, textureSize(textureName, 0).y);"
"vec2 centrePoint = mix(startPoint, endPoint, lateral) / scale;"
"vec2 height = normalize(endPoint - startPoint).yx * (longitudinal - 0.5) * rowHeight;"
"vec2 eyePosition = vec2(-1.0, 1.0) + vec2(2.0, -2.0) * (centrePoint + height);"
"gl_Position = vec4(eyePosition, 0.0, 1.0);"
"}";
}
}
void ScanTarget::enable_vertex_attributes(ShaderType type, Shader &target) {
switch(type) {
case ShaderType::Scan:
for(int c = 0; c < 2; ++c) {
const std::string prefix = c ? "end" : "start";
target.enable_vertex_attribute_with_pointer(
prefix + "Point",
2, GL_UNSIGNED_SHORT, GL_FALSE,
sizeof(Scan),
reinterpret_cast<void *>(offsetof(Scan, scan.end_points[c].x)),
1);
target.enable_vertex_attribute_with_pointer(
prefix + "DataX",
1, GL_UNSIGNED_SHORT, GL_FALSE,
sizeof(Scan),
reinterpret_cast<void *>(offsetof(Scan, scan.end_points[c].data_offset)),
1);
target.enable_vertex_attribute_with_pointer(
prefix + "CompositeAngle",
1, GL_UNSIGNED_SHORT, GL_FALSE,
sizeof(Scan),
reinterpret_cast<void *>(offsetof(Scan, scan.end_points[c].composite_angle)),
1);
}
target.enable_vertex_attribute_with_pointer(
"dataY",
1, GL_UNSIGNED_SHORT, GL_FALSE,
sizeof(Scan),
reinterpret_cast<void *>(offsetof(Scan, data_y)),
1);
target.enable_vertex_attribute_with_pointer(
"lineY",
1, GL_UNSIGNED_SHORT, GL_FALSE,
sizeof(Scan),
reinterpret_cast<void *>(offsetof(Scan, line)),
1);
break;
case ShaderType::Line:
for(int c = 0; c < 2; ++c) {
const std::string prefix = c ? "end" : "start";
target.enable_vertex_attribute_with_pointer(
prefix + "Point",
2, GL_UNSIGNED_SHORT, GL_FALSE,
sizeof(Line),
reinterpret_cast<void *>(offsetof(Line, end_points[c].x)),
1);
}
target.enable_vertex_attribute_with_pointer(
"lineY",
1, GL_UNSIGNED_SHORT, GL_FALSE,
sizeof(Line),
reinterpret_cast<void *>(offsetof(Line, line)),
1);
break;
}
}
std::unique_ptr<Shader> ScanTarget::input_shader(InputDataType input_data_type, OutputType output_type) {
std::string fragment_shader =
"#version 150\n"
"out vec4 fragColour;"
"in vec2 textureCoordinate;";
switch(input_data_type) {
case InputDataType::Luminance1:
fragment_shader +=
"uniform usampler2D textureName;"
"void main(void) {";
switch(output_type) {
case OutputType::RGB:
fragment_shader += "fragColour = vec4(texture(textureName, textureCoordinate).rrr, 1.0);";
break;
default:
fragment_shader += "fragColour = vec4(texture(textureName, textureCoordinate).r, 0.0, 0.0, 1.0);";
break;
}
fragment_shader += "}";
break;
case InputDataType::Luminance8:
break;
// SVideo,
// CompositeColour,
// CompositeMonochrome
case InputDataType::Phase8Luminance8:
return nullptr;
// fragment_shader +=
// "uniform sampler2D textureName;"
// "void main(void) {";
//
// switch(output_type) {
// default: return nullptr;
//
// case OutputType::SVideo:
// break;
//// CompositeColour,
//// CompositeMonochrome
// }
//
// fragment_shader += "}";
// break;
case InputDataType::Red1Green1Blue1:
// TODO: write encoding functions for RGB -> composite/s-video.
fragment_shader +=
"uniform usampler2D textureName;"
"void main(void) {"
"uint textureValue = texture(textureName, textureCoordinate).r;"
"fragColour = vec4(uvec3(textureValue) & uvec3(4u, 2u, 1u), 1.0);"
"}";
break;
case InputDataType::Red2Green2Blue2:
break;
case InputDataType::Red4Green4Blue4:
break;
case InputDataType::Red8Green8Blue8:
fragment_shader +=
"uniform usampler2D textureName;"
"void main(void) {"
"fragColour = vec4(texture(textureName, textureCoordinate).rgb / vec3(255.0), 1.0);"
"}";
break;
}
return std::unique_ptr<Shader>(new Shader(
glsl_globals(ShaderType::Scan) + glsl_default_vertex_shader(ShaderType::Scan),
fragment_shader
));
}