1
0
mirror of https://github.com/TomHarte/CLK.git synced 2025-01-01 02:31:00 +00:00
CLK/OSBindings/Mac/Clock Signal/Audio/CSAudioQueue.m

217 lines
6.1 KiB
Objective-C

//
// AudioQueue.m
// Clock Signal
//
// Created by Thomas Harte on 14/01/2016.
// Copyright 2016 Thomas Harte. All rights reserved.
//
#import "CSAudioQueue.h"
@import AudioToolbox;
#include <stdatomic.h>
#define OSSGuard(x) { \
const OSStatus status = x; \
assert(!status); \
(void)status; \
}
#define IsDry(x) (x) < 2
#define MaximumBacklog 4
#define NumBuffers (MaximumBacklog + 1)
@implementation CSAudioQueue {
AudioQueueRef _audioQueue;
NSLock *_deallocLock;
NSLock *_queueLock;
atomic_int _enqueuedBuffers;
AudioQueueBufferRef _buffers[NumBuffers];
int _bufferWritePointer;
unsigned int _numChannels;
}
#pragma mark - Status
- (BOOL)isRunningDry {
return IsDry(atomic_load_explicit(&_enqueuedBuffers, memory_order_relaxed));
}
#pragma mark - Object lifecycle
- (instancetype)initWithSamplingRate:(Float64)samplingRate isStereo:(BOOL)isStereo {
self = [super init];
if(self) {
_deallocLock = [[NSLock alloc] init];
_deallocLock.name = @"Dealloc lock";
_queueLock = [[NSLock alloc] init];
_queueLock.name = @"Audio queue access lock";
atomic_store_explicit(&_enqueuedBuffers, 0, memory_order_relaxed);
_samplingRate = samplingRate;
_numChannels = isStereo ? 2 : 1;
// Determine preferred buffer size as being the first power of two
// not less than 1/100th of a second.
_preferredBufferSize = 1;
const NSUInteger oneHundredthOfRate = (NSUInteger)(samplingRate / 100.0);
while(_preferredBufferSize < oneHundredthOfRate) _preferredBufferSize <<= 1;
// Describe a 16bit stream of the requested sampling rate.
AudioStreamBasicDescription outputDescription;
outputDescription.mSampleRate = samplingRate;
outputDescription.mChannelsPerFrame = isStereo ? 2 : 1;
outputDescription.mFormatID = kAudioFormatLinearPCM;
outputDescription.mFormatFlags = kLinearPCMFormatFlagIsSignedInteger;
outputDescription.mFramesPerPacket = 1;
outputDescription.mBytesPerFrame = 2 * outputDescription.mChannelsPerFrame;
outputDescription.mBytesPerPacket = outputDescription.mBytesPerFrame * outputDescription.mFramesPerPacket;
outputDescription.mBitsPerChannel = 16;
outputDescription.mReserved = 0;
// Create an audio output queue along those lines.
__weak CSAudioQueue *weakSelf = self;
if(AudioQueueNewOutputWithDispatchQueue(
&_audioQueue,
&outputDescription,
0,
dispatch_get_global_queue(QOS_CLASS_USER_INTERACTIVE, 0),
^(AudioQueueRef inAQ, AudioQueueBufferRef inBuffer) {
(void)inBuffer;
CSAudioQueue *queue = weakSelf;
if(!queue) {
return;
}
if([queue->_deallocLock tryLock]) {
const int buffers = atomic_fetch_add(&queue->_enqueuedBuffers, -1) - 1;
if(!buffers) {
[queue->_queueLock lock];
OSSGuard(AudioQueuePause(inAQ));
[queue->_queueLock unlock];
}
id<CSAudioQueueDelegate> delegate = queue.delegate;
[queue->_deallocLock unlock];
if(IsDry(buffers)) [delegate audioQueueIsRunningDry:queue];
}
}
)
) {
return nil;
}
}
return self;
}
- (void)dealloc {
[_deallocLock lock];
// Ensure no buffers remain enqueued by stopping the queue.
if(_audioQueue) {
OSSGuard(AudioQueueStop(_audioQueue, true));
}
// Free all buffers.
for(size_t c = 0; c < NumBuffers; c++) {
if(_buffers[c]) {
OSSGuard(AudioQueueFreeBuffer(_audioQueue, _buffers[c]));
_buffers[c] = NULL;
}
}
// Dispose of the queue.
if(_audioQueue) {
OSSGuard(AudioQueueDispose(_audioQueue, true));
_audioQueue = NULL;
}
// nil out the dealloc lock before entering the critical section such
// that it becomes impossible for anyone else to acquire.
NSLock *deallocLock = _deallocLock;
_deallocLock = nil;
[deallocLock unlock];
}
#pragma mark - Audio enqueuer
- (void)setBufferSize:(NSUInteger)bufferSize {
_bufferSize = bufferSize;
// Allocate future audio buffers.
[_queueLock lock];
const size_t bufferBytes = self.bufferSize * sizeof(int16_t) * _numChannels;
for(size_t c = 0; c < NumBuffers; c++) {
if(_buffers[c]) {
OSSGuard(AudioQueueFreeBuffer(_audioQueue, _buffers[c]));
}
OSSGuard(AudioQueueAllocateBuffer(_audioQueue, (UInt32)bufferBytes, &_buffers[c]));
_buffers[c]->mAudioDataByteSize = (UInt32)bufferBytes;
}
[_queueLock unlock];
}
- (void)enqueueAudioBuffer:(const int16_t *)buffer {
const size_t bufferBytes = self.bufferSize * sizeof(int16_t) * _numChannels;
// Don't enqueue more than the allowed number of future buffers,
// to ensure not too much latency accrues.
if(atomic_load_explicit(&_enqueuedBuffers, memory_order_relaxed) == MaximumBacklog) {
return;
}
const int enqueuedBuffers = atomic_fetch_add(&_enqueuedBuffers, 1) + 1;
const int targetBuffer = _bufferWritePointer;
_bufferWritePointer = (_bufferWritePointer + 1) % NumBuffers;
memcpy(_buffers[targetBuffer]->mAudioData, buffer, bufferBytes);
[_queueLock lock];
OSSGuard(AudioQueueEnqueueBuffer(_audioQueue, _buffers[targetBuffer], 0, NULL));
// Starting is a no-op if the queue is already playing, but it may not have been started
// yet, or may have been paused due to a pipeline failure if the producer is running slowly.
if(enqueuedBuffers > 1) {
OSSGuard(AudioQueueStart(_audioQueue, NULL));
}
[_queueLock unlock];
}
#pragma mark - Sampling Rate getters
+ (AudioDeviceID)defaultOutputDevice {
AudioObjectPropertyAddress address;
address.mSelector = kAudioHardwarePropertyDefaultOutputDevice;
address.mScope = kAudioObjectPropertyScopeGlobal;
address.mElement = kAudioObjectPropertyElementMaster;
AudioDeviceID deviceID;
UInt32 size = sizeof(AudioDeviceID);
return AudioObjectGetPropertyData(kAudioObjectSystemObject, &address, sizeof(AudioObjectPropertyAddress), NULL, &size, &deviceID) ? 0 : deviceID;
}
+ (Float64)preferredSamplingRate {
AudioObjectPropertyAddress address;
address.mSelector = kAudioDevicePropertyNominalSampleRate;
address.mScope = kAudioObjectPropertyScopeGlobal;
address.mElement = kAudioObjectPropertyElementMaster;
Float64 samplingRate;
UInt32 size = sizeof(Float64);
return AudioObjectGetPropertyData([self defaultOutputDevice], &address, sizeof(AudioObjectPropertyAddress), NULL, &size, &samplingRate) ? 0.0 : samplingRate;
}
@end