1
0
mirror of https://github.com/TomHarte/CLK.git synced 2024-11-26 08:49:37 +00:00
CLK/Storage/Disk/Encodings/MFM/Encoder.cpp
2020-05-30 19:31:17 -04:00

384 lines
12 KiB
C++

//
// MFM.cpp
// Clock Signal
//
// Created by Thomas Harte on 18/09/2016.
// Copyright 2016 Thomas Harte. All rights reserved.
//
#include "Encoder.hpp"
#include "Constants.hpp"
#include "../../Track/PCMTrack.hpp"
#include "../../../../Numeric/CRC.hpp"
#include <cassert>
#include <set>
using namespace Storage::Encodings::MFM;
enum class SurfaceItem {
Mark,
Data
};
class MFMEncoder: public Encoder {
public:
MFMEncoder(std::vector<bool> &target, std::vector<bool> *fuzzy_target = nullptr) : Encoder(target, fuzzy_target) {}
virtual ~MFMEncoder() {}
void add_byte(uint8_t input, uint8_t fuzzy_mask = 0) final {
crc_generator_.add(input);
const uint16_t spread_value =
uint16_t(
((input & 0x01) << 0) |
((input & 0x02) << 1) |
((input & 0x04) << 2) |
((input & 0x08) << 3) |
((input & 0x10) << 4) |
((input & 0x20) << 5) |
((input & 0x40) << 6) |
((input & 0x80) << 7)
);
const uint16_t or_bits = uint16_t((spread_value << 1) | (spread_value >> 1) | (last_output_ << 15));
const uint16_t output = spread_value | ((~or_bits) & 0xaaaa);
const uint16_t spread_mask =
uint16_t(
((fuzzy_mask & 0x01) << 0) |
((fuzzy_mask & 0x02) << 1) |
((fuzzy_mask & 0x04) << 2) |
((fuzzy_mask & 0x08) << 3) |
((fuzzy_mask & 0x10) << 4) |
((fuzzy_mask & 0x20) << 5) |
((fuzzy_mask & 0x40) << 6) |
((fuzzy_mask & 0x80) << 7)
);
output_short(output, spread_mask);
}
void add_index_address_mark() final {
for(int c = 0; c < 3; c++) output_short(MFMIndexSync);
add_byte(IndexAddressByte);
}
void add_ID_address_mark() final {
output_sync();
add_byte(IDAddressByte);
}
void add_data_address_mark() final {
output_sync();
add_byte(DataAddressByte);
}
void add_deleted_data_address_mark() final {
output_sync();
add_byte(DeletedDataAddressByte);
}
size_t item_size(SurfaceItem item) {
switch(item) {
case SurfaceItem::Mark: return 8; // Three syncs plus the mark type.
case SurfaceItem::Data: return 2; // Just a single encoded byte.
default: assert(false);
}
return 0; // Should be impossible to reach in debug builds.
}
private:
uint16_t last_output_;
void output_short(uint16_t value, uint16_t fuzzy_mask = 0) final {
last_output_ = value;
Encoder::output_short(value, fuzzy_mask);
}
void output_sync() {
for(int c = 0; c < 3; c++) output_short(MFMSync);
crc_generator_.set_value(MFMPostSyncCRCValue);
}
};
class FMEncoder: public Encoder {
// encodes each 16-bit part as clock, data, clock, data [...]
public:
FMEncoder(std::vector<bool> &target, std::vector<bool> *fuzzy_target = nullptr) : Encoder(target, fuzzy_target) {}
void add_byte(uint8_t input, uint8_t fuzzy_mask = 0) final {
crc_generator_.add(input);
output_short(
uint16_t(
((input & 0x01) << 0) |
((input & 0x02) << 1) |
((input & 0x04) << 2) |
((input & 0x08) << 3) |
((input & 0x10) << 4) |
((input & 0x20) << 5) |
((input & 0x40) << 6) |
((input & 0x80) << 7) |
0xaaaa
),
uint16_t(
((fuzzy_mask & 0x01) << 0) |
((fuzzy_mask & 0x02) << 1) |
((fuzzy_mask & 0x04) << 2) |
((fuzzy_mask & 0x08) << 3) |
((fuzzy_mask & 0x10) << 4) |
((fuzzy_mask & 0x20) << 5) |
((fuzzy_mask & 0x40) << 6) |
((fuzzy_mask & 0x80) << 7)
)
);
}
void add_index_address_mark() final {
crc_generator_.reset();
crc_generator_.add(IndexAddressByte);
output_short(FMIndexAddressMark);
}
void add_ID_address_mark() final {
crc_generator_.reset();
crc_generator_.add(IDAddressByte);
output_short(FMIDAddressMark);
}
void add_data_address_mark() final {
crc_generator_.reset();
crc_generator_.add(DataAddressByte);
output_short(FMDataAddressMark);
}
void add_deleted_data_address_mark() final {
crc_generator_.reset();
crc_generator_.add(DeletedDataAddressByte);
output_short(FMDeletedDataAddressMark);
}
size_t item_size(SurfaceItem) {
// Marks are just slightly-invalid bytes, so everything is the same length.
return 2;
}
};
template<class T> std::shared_ptr<Storage::Disk::Track>
GetTrackWithSectors(
const std::vector<const Sector *> &sectors,
std::size_t post_index_address_mark_bytes, uint8_t post_index_address_mark_value,
std::size_t pre_address_mark_bytes,
std::size_t post_address_mark_bytes, uint8_t post_address_mark_value,
std::size_t pre_data_mark_bytes,
std::size_t post_data_bytes, uint8_t post_data_value,
std::size_t expected_track_bytes) {
Storage::Disk::PCMSegment segment;
segment.data.reserve(expected_track_bytes * 8);
T shifter(segment.data);
// Make a pre-estimate of output size, in case any of the idealised gaps
// provided need to be shortened.
const size_t data_size = shifter.item_size(SurfaceItem::Data);
const size_t mark_size = shifter.item_size(SurfaceItem::Mark);
const size_t max_size = (expected_track_bytes + (expected_track_bytes / 10)) * 8;
size_t total_sector_bytes = 0;
for(const auto sector : sectors) {
total_sector_bytes += size_t(128 << sector->size) + 2;
}
// Seek appropriate gap sizes, if the defaults don't allow all data to fit.
while(true) {
const size_t size =
mark_size +
post_index_address_mark_bytes * data_size +
total_sector_bytes * data_size +
sectors.size() * (
(pre_address_mark_bytes + 6 + post_address_mark_bytes + pre_data_mark_bytes + post_data_bytes) * data_size + 2 * mark_size
);
// If this track already fits, do nothing.
if(size*8 < max_size) break;
// If all gaps are already zero, do nothing.
if(!post_index_address_mark_bytes && !pre_address_mark_bytes && !post_address_mark_bytes && !pre_data_mark_bytes && !post_data_bytes)
break;
// Very simple solution: try halving all gaps.
post_index_address_mark_bytes >>= 1;
pre_address_mark_bytes >>= 1;
post_address_mark_bytes >>= 1;
pre_data_mark_bytes >>= 1;
post_data_bytes >>= 1;
}
// Output the index mark.
shifter.add_index_address_mark();
// Add the post-index mark.
for(std::size_t c = 0; c < post_index_address_mark_bytes; c++) shifter.add_byte(post_index_address_mark_value);
// Add sectors.
for(const Sector *sector : sectors) {
// Gap.
for(std::size_t c = 0; c < pre_address_mark_bytes; c++) shifter.add_byte(0x00);
// Sector header.
shifter.add_ID_address_mark();
shifter.add_byte(sector->address.track);
shifter.add_byte(sector->address.side);
shifter.add_byte(sector->address.sector);
shifter.add_byte(sector->size);
shifter.add_crc(sector->has_header_crc_error);
// Gap.
for(std::size_t c = 0; c < post_address_mark_bytes; c++) shifter.add_byte(post_address_mark_value);
for(std::size_t c = 0; c < pre_data_mark_bytes; c++) shifter.add_byte(0x00);
// Data, if attached.
if(!sector->samples.empty()) {
if(sector->is_deleted)
shifter.add_deleted_data_address_mark();
else
shifter.add_data_address_mark();
std::size_t c = 0;
std::size_t declared_length = size_t(128 << sector->size);
if(sector->samples.size() > 1) {
// For each byte, mark as fuzzy any bits that differ. Which isn't exactly the
// same thing as obeying the multiple samples, as it discards the implied
// probabilities of different values.
for(c = 0; c < sector->samples[0].size() && c < declared_length; c++) {
auto sample_iterator = sector->samples.begin();
uint8_t value = (*sample_iterator)[c], fuzzy_mask = 0;
++sample_iterator;
while(sample_iterator != sector->samples.end()) {
// Mark as fuzzy any bits that differ here from the
// canonical value, and zero them out in the original.
// That might cause them to retrigger, but who cares?
fuzzy_mask |= value ^ (*sample_iterator)[c];
value &= ~fuzzy_mask;
++sample_iterator;
}
shifter.add_byte(sector->samples[0][c], fuzzy_mask);
}
} else {
for(c = 0; c < sector->samples[0].size() && c < declared_length; c++) {
shifter.add_byte(sector->samples[0][c]);
}
}
for(; c < declared_length; c++) {
shifter.add_byte(0x00);
}
shifter.add_crc(sector->has_data_crc_error);
}
// Gap.
for(std::size_t c = 0; c < post_data_bytes; c++) shifter.add_byte(post_data_value);
}
while(segment.data.size() < expected_track_bytes*8) shifter.add_byte(0x00);
// Allow the amount of data written to be up to 10% more than the expected size. Which is generous.
if(segment.data.size() > max_size) segment.data.resize(max_size);
return std::make_shared<Storage::Disk::PCMTrack>(std::move(segment));
}
Encoder::Encoder(std::vector<bool> &target, std::vector<bool> *fuzzy_target) :
target_(&target), fuzzy_target_(fuzzy_target) {}
void Encoder::reset_target(std::vector<bool> &target, std::vector<bool> *fuzzy_target) {
target_ = &target;
fuzzy_target_ = fuzzy_target;
}
void Encoder::output_short(uint16_t value, uint16_t fuzzy_mask) {
const bool write_fuzzy_bits = fuzzy_mask;
if(write_fuzzy_bits) {
assert(fuzzy_target_);
// Zero-fill the bits to date, to cover any shorts written without fuzzy bits,
// and make sure the value has a 0 anywhere it should be fuzzy.
fuzzy_target_->resize(target_->size());
value &= ~fuzzy_mask;
}
uint16_t mask = 0x8000;
while(mask) {
target_->push_back(value & mask);
if(write_fuzzy_bits) fuzzy_target_->push_back(fuzzy_mask & mask);
mask >>= 1;
}
}
void Encoder::add_crc(bool incorrectly) {
const uint16_t crc_value = crc_generator_.get_value();
add_byte(crc_value >> 8);
add_byte((crc_value & 0xff) ^ (incorrectly ? 1 : 0));
}
const std::size_t Storage::Encodings::MFM::DefaultSectorGapLength = std::numeric_limits<std::size_t>::max();
static std::vector<const Sector *> sector_pointers(const std::vector<Sector> &sectors) {
std::vector<const Sector *> pointers;
for(const Sector &sector: sectors) {
pointers.push_back(&sector);
}
return pointers;
}
std::shared_ptr<Storage::Disk::Track> Storage::Encodings::MFM::GetFMTrackWithSectors(const std::vector<Sector> &sectors, std::size_t sector_gap_length, uint8_t sector_gap_filler_byte) {
return GetTrackWithSectors<FMEncoder>(
sector_pointers(sectors),
26, 0xff,
6,
11, sector_gap_filler_byte,
6,
(sector_gap_length != DefaultSectorGapLength) ? sector_gap_length : 27, 0xff,
6250); // i.e. 250kbps (including clocks) * 60 = 15000kpm, at 300 rpm => 50 kbits/rotation => 6250 bytes/rotation
}
std::shared_ptr<Storage::Disk::Track> Storage::Encodings::MFM::GetFMTrackWithSectors(const std::vector<const Sector *> &sectors, std::size_t sector_gap_length, uint8_t sector_gap_filler_byte) {
return GetTrackWithSectors<FMEncoder>(
sectors,
26, 0xff,
6,
11, sector_gap_filler_byte,
6,
(sector_gap_length != DefaultSectorGapLength) ? sector_gap_length : 27, 0xff,
6250); // i.e. 250kbps (including clocks) * 60 = 15000kpm, at 300 rpm => 50 kbits/rotation => 6250 bytes/rotation
}
std::shared_ptr<Storage::Disk::Track> Storage::Encodings::MFM::GetMFMTrackWithSectors(const std::vector<Sector> &sectors, std::size_t sector_gap_length, uint8_t sector_gap_filler_byte) {
return GetTrackWithSectors<MFMEncoder>(
sector_pointers(sectors),
50, 0x4e,
12,
22, sector_gap_filler_byte,
12,
(sector_gap_length != DefaultSectorGapLength) ? sector_gap_length : 54, 0xff,
12500); // unintelligently: double the single-density bytes/rotation (or: 500kbps @ 300 rpm)
}
std::shared_ptr<Storage::Disk::Track> Storage::Encodings::MFM::GetMFMTrackWithSectors(const std::vector<const Sector *> &sectors, std::size_t sector_gap_length, uint8_t sector_gap_filler_byte) {
return GetTrackWithSectors<MFMEncoder>(
sectors,
50, 0x4e,
12,
22, sector_gap_filler_byte,
12,
(sector_gap_length != DefaultSectorGapLength) ? sector_gap_length : 54, 0xff,
12500); // unintelligently: double the single-density bytes/rotation (or: 500kbps @ 300 rpm)
}
std::unique_ptr<Encoder> Storage::Encodings::MFM::GetMFMEncoder(std::vector<bool> &target, std::vector<bool> *fuzzy_target) {
return std::make_unique<MFMEncoder>(target, fuzzy_target);
}
std::unique_ptr<Encoder> Storage::Encodings::MFM::GetFMEncoder(std::vector<bool> &target, std::vector<bool> *fuzzy_target) {
return std::make_unique<FMEncoder>(target, fuzzy_target);
}