mirror of
https://github.com/TomHarte/CLK.git
synced 2024-11-28 21:49:27 +00:00
012084b37b
The clock test now proceeds further, but still doesn't seem to pass.
325 lines
8.4 KiB
C++
325 lines
8.4 KiB
C++
//
|
||
// Blitter.cpp
|
||
// Clock Signal
|
||
//
|
||
// Created by Thomas Harte on 22/07/2021.
|
||
// Copyright © 2021 Thomas Harte. All rights reserved.
|
||
//
|
||
|
||
#include "Blitter.hpp"
|
||
|
||
#include "Minterms.hpp"
|
||
|
||
#include <cassert>
|
||
|
||
#ifndef NDEBUG
|
||
#define NDEBUG
|
||
#endif
|
||
|
||
#define LOG_PREFIX "[Blitter] "
|
||
#include "../../Outputs/Log.hpp"
|
||
|
||
using namespace Amiga;
|
||
|
||
void Blitter::set_control(int index, uint16_t value) {
|
||
if(index) {
|
||
line_mode_ = (value & 0x0001);
|
||
one_dot_ = value & 0x0002;
|
||
line_direction_ = (value >> 2) & 7;
|
||
line_sign_ = (value & 0x0040) ? -1 : 1;
|
||
|
||
direction_ = one_dot_ ? uint32_t(-1) : uint32_t(1);
|
||
exclusive_fill_ = (value & 0x0010);
|
||
inclusive_fill_ = !exclusive_fill_ && (value & 0x0008); // Exclusive fill takes precedence. Probably? TODO: verify.
|
||
fill_carry_ = (value & 0x0004);
|
||
} else {
|
||
minterms_ = value & 0xff;
|
||
channel_enables_[3] = value & 0x100;
|
||
channel_enables_[2] = value & 0x200;
|
||
channel_enables_[1] = value & 0x400;
|
||
channel_enables_[0] = value & 0x800;
|
||
}
|
||
shifts_[index] = value >> 12;
|
||
LOG("Set control " << index << " to " << PADHEX(4) << value);
|
||
}
|
||
|
||
void Blitter::set_first_word_mask(uint16_t value) {
|
||
LOG("Set first word mask: " << PADHEX(4) << value);
|
||
a_mask_[0] = value;
|
||
}
|
||
|
||
void Blitter::set_last_word_mask(uint16_t value) {
|
||
LOG("Set last word mask: " << PADHEX(4) << value);
|
||
a_mask_[1] = value;
|
||
}
|
||
|
||
void Blitter::set_size(uint16_t value) {
|
||
// width_ = (width_ & ~0x3f) | (value & 0x3f);
|
||
// height_ = (height_ & ~0x3ff) | (value >> 6);
|
||
width_ = value & 0x3f;
|
||
if(!width_) width_ = 0x40;
|
||
height_ = value >> 6;
|
||
if(!height_) height_ = 1024;
|
||
LOG("Set size to " << std::dec << width_ << ", " << height_);
|
||
|
||
// Current assumption: writing this register informs the
|
||
// blitter that it should treat itself as about to start a new line.
|
||
}
|
||
|
||
void Blitter::set_minterms(uint16_t value) {
|
||
LOG("Set minterms " << PADHEX(4) << value);
|
||
minterms_ = value & 0xff;
|
||
}
|
||
|
||
//void Blitter::set_vertical_size([[maybe_unused]] uint16_t value) {
|
||
// LOG("Set vertical size " << PADHEX(4) << value);
|
||
// // TODO. This is ECS only, I think. Ditto set_horizontal_size.
|
||
//}
|
||
//
|
||
//void Blitter::set_horizontal_size([[maybe_unused]] uint16_t value) {
|
||
// LOG("Set horizontal size " << PADHEX(4) << value);
|
||
//}
|
||
|
||
void Blitter::set_data(int channel, uint16_t value) {
|
||
LOG("Set data " << channel << " to " << PADHEX(4) << value);
|
||
|
||
// Ugh, backed myself into a corner. TODO: clean.
|
||
switch(channel) {
|
||
case 0: a_data_ = value; break;
|
||
case 1: b_data_ = value; break;
|
||
case 2: c_data_ = value; break;
|
||
default: break;
|
||
}
|
||
}
|
||
|
||
uint16_t Blitter::get_status() {
|
||
const uint16_t result =
|
||
(not_zero_flag_ ? 0x0000 : 0x2000) | (height_ ? 0x4000 : 0x0000);
|
||
LOG("Returned status of " << result);
|
||
return result;
|
||
}
|
||
|
||
bool Blitter::advance_dma() {
|
||
if(!height_) return false;
|
||
|
||
not_zero_flag_ = false;
|
||
if(line_mode_) {
|
||
// As-yet unimplemented:
|
||
assert(b_data_ == 0xffff);
|
||
|
||
//
|
||
// Line mode.
|
||
//
|
||
|
||
// Bluffer's guide to line mode:
|
||
//
|
||
// In Bresenham terms, the following registers have been set up:
|
||
//
|
||
// [A modulo] = 4 * (dy - dx)
|
||
// [B modulo] = 4 * dy
|
||
// [A pointer] = 4 * dy - 2 * dx, with the sign flag in BLTCON1 indicating sign.
|
||
//
|
||
// [A data] = 0x8000
|
||
// [Both masks] = 0xffff
|
||
// [A shift] = x1 & 15
|
||
//
|
||
// [B data] = texture
|
||
// [B shift] = bit at which to start the line texture (0 = LSB)
|
||
//
|
||
// [C and D pointers] = word containing the first pixel of the line
|
||
// [C and D modulo] = width of the bitplane in bytes
|
||
//
|
||
// height = number of pixels
|
||
//
|
||
// If ONEDOT of BLTCON1 is set, plot only a single bit per horizontal row.
|
||
//
|
||
// BLTCON1 quadrants are (bits 2–4):
|
||
//
|
||
// 110 -> step in x, x positive, y negative
|
||
// 111 -> step in x, x negative, y negative
|
||
// 101 -> step in x, x negative, y positive
|
||
// 100 -> step in x, x positive, y positive
|
||
//
|
||
// 001 -> step in y, x positive, y negative
|
||
// 011 -> step in y, x negative, y negative
|
||
// 010 -> step in y, x negative, y positive
|
||
// 000 -> step in y, x positive, y positive
|
||
//
|
||
// So that's:
|
||
//
|
||
// * bit 4 = x [=1] or y [=0] major;
|
||
// * bit 3 = 1 => major variable negative; otherwise positive;
|
||
// * bit 2 = 1 => minor variable negative; otherwise positive.
|
||
|
||
//
|
||
// Implementation below is heavily based on the documentation found
|
||
// at https://github.com/niklasekstrom/blitter-subpixel-line/blob/master/Drawing%20lines%20using%20the%20Amiga%20blitter.pdf
|
||
//
|
||
|
||
int error = int16_t(pointer_[0] << 1) >> 1; // TODO: what happens if line_sign_ doesn't agree with this?
|
||
bool draw_ = true;
|
||
while(height_--) {
|
||
|
||
if(draw_) {
|
||
// TODO: patterned lines. Unclear what to do with the bit that comes out of b.
|
||
// Probably extend it to a full word?
|
||
c_data_ = ram_[pointer_[3] & ram_mask_];
|
||
const uint16_t output =
|
||
apply_minterm<uint16_t>(a_data_ >> shifts_[0], b_data_, c_data_, minterms_);
|
||
ram_[pointer_[3] & ram_mask_] = output;
|
||
not_zero_flag_ |= output;
|
||
draw_ &= !one_dot_;
|
||
}
|
||
|
||
constexpr int LEFT = 1 << 0;
|
||
constexpr int RIGHT = 1 << 1;
|
||
constexpr int UP = 1 << 2;
|
||
constexpr int DOWN = 1 << 3;
|
||
int step = (line_direction_ & 4) ?
|
||
((line_direction_ & 1) ? LEFT : RIGHT) :
|
||
((line_direction_ & 1) ? UP : DOWN);
|
||
|
||
if(error < 0) {
|
||
error += modulos_[1];
|
||
} else {
|
||
step |=
|
||
(line_direction_ & 4) ?
|
||
((line_direction_ & 2) ? UP : DOWN) :
|
||
((line_direction_ & 2) ? LEFT : RIGHT);
|
||
|
||
error += modulos_[0];
|
||
}
|
||
|
||
if(step & LEFT) {
|
||
--shifts_[0];
|
||
if(shifts_[0] == -1) {
|
||
--pointer_[3];
|
||
}
|
||
} else if(step & RIGHT) {
|
||
++shifts_[0];
|
||
if(shifts_[0] == 16) {
|
||
++pointer_[3];
|
||
}
|
||
}
|
||
shifts_[0] &= 15;
|
||
|
||
if(step & UP) {
|
||
pointer_[3] -= modulos_[2];
|
||
draw_ = true;
|
||
} else if(step & DOWN) {
|
||
pointer_[3] += modulos_[2];
|
||
draw_ = true;
|
||
}
|
||
}
|
||
} else {
|
||
// Copy mode.
|
||
|
||
// Quick hack: do the entire action atomically.
|
||
a32_ = 0;
|
||
b32_ = 0;
|
||
|
||
for(int y = 0; y < height_; y++) {
|
||
bool fill_carry = fill_carry_;
|
||
|
||
for(int x = 0; x < width_; x++) {
|
||
uint16_t a_mask = 0xffff;
|
||
if(x == 0) a_mask &= a_mask_[0];
|
||
if(x == width_ - 1) a_mask &= a_mask_[1];
|
||
|
||
if(channel_enables_[0]) {
|
||
a_data_ = ram_[pointer_[0] & ram_mask_];
|
||
pointer_[0] += direction_;
|
||
}
|
||
a32_ = (a32_ << 16) | (a_data_ & a_mask);
|
||
|
||
if(channel_enables_[1]) {
|
||
b_data_ = ram_[pointer_[1] & ram_mask_];
|
||
pointer_[1] += direction_;
|
||
}
|
||
b32_ = (b32_ << 16) | b_data_;
|
||
|
||
if(channel_enables_[2]) {
|
||
c_data_ = ram_[pointer_[2] & ram_mask_];
|
||
pointer_[2] += direction_;
|
||
}
|
||
|
||
uint16_t a, b;
|
||
|
||
// The barrel shifter shifts to the right in ascending address mode,
|
||
// but to the left otherwise
|
||
if(!one_dot_) {
|
||
a = uint16_t(a32_ >> shifts_[0]);
|
||
b = uint16_t(b32_ >> shifts_[1]);
|
||
} else {
|
||
// TODO: there must be a neater solution than this.
|
||
a = uint16_t(
|
||
(a32_ << shifts_[0]) |
|
||
(a32_ >> (32 - shifts_[0]))
|
||
);
|
||
|
||
b = uint16_t(
|
||
(b32_ << shifts_[1]) |
|
||
(b32_ >> (32 - shifts_[1]))
|
||
);
|
||
}
|
||
|
||
uint16_t output =
|
||
apply_minterm<uint16_t>(
|
||
a,
|
||
b,
|
||
c_data_,
|
||
minterms_);
|
||
|
||
// TODO: don't be so dense as below. This is the initial
|
||
// does-it-pass-the-tests? version.
|
||
if(exclusive_fill_ || inclusive_fill_) {
|
||
uint16_t fill_output = 0;
|
||
uint16_t bit = one_dot_ ? 0x0001 : 0x8000;
|
||
uint16_t flag = fill_carry ? bit : 0x0000;
|
||
while(bit) {
|
||
uint16_t pre_toggle = output & bit, post_toggle = pre_toggle;
|
||
if(inclusive_fill_) {
|
||
pre_toggle &= ~flag; // Accept bits that would transition to set immediately.
|
||
post_toggle &= flag; // Accept bits that would transition to clear after the fact.
|
||
} else {
|
||
post_toggle = 0; // Just do the pre toggle.
|
||
}
|
||
|
||
flag ^= pre_toggle;
|
||
fill_output |= flag;
|
||
flag ^= post_toggle;
|
||
|
||
fill_carry = flag;
|
||
if(one_dot_) {
|
||
bit <<= 1;
|
||
flag <<= 1;
|
||
} else {
|
||
bit >>= 1;
|
||
flag >>= 1;
|
||
}
|
||
}
|
||
|
||
output = fill_output;
|
||
}
|
||
|
||
not_zero_flag_ |= output;
|
||
|
||
if(channel_enables_[3]) {
|
||
ram_[pointer_[3] & ram_mask_] = output;
|
||
pointer_[3] += direction_;
|
||
}
|
||
}
|
||
|
||
pointer_[0] += modulos_[0] * channel_enables_[0] * direction_;
|
||
pointer_[1] += modulos_[1] * channel_enables_[1] * direction_;
|
||
pointer_[2] += modulos_[2] * channel_enables_[2] * direction_;
|
||
pointer_[3] += modulos_[3] * channel_enables_[3] * direction_;
|
||
}
|
||
}
|
||
|
||
posit_interrupt(InterruptFlag::Blitter);
|
||
height_ = 0;
|
||
|
||
return true;
|
||
}
|