1
0
mirror of https://github.com/TomHarte/CLK.git synced 2025-01-18 23:29:49 +00:00
CLK/Processors/Z80/State/State.cpp

226 lines
8.2 KiB
C++

//
// State.cpp
// Clock Signal
//
// Created by Thomas Harte on 13/05/2020.
// Copyright © 2020 Thomas Harte. All rights reserved.
//
#include "State.hpp"
#include <cassert>
using namespace CPU::Z80;
State::State(const ProcessorBase &src): State() {
// Registers.
registers.a = src.a_;
registers.flags = src.get_flags();
registers.bc = src.bc_.full;
registers.de = src.de_.full;
registers.hl = src.hl_.full;
registers.af_dash = src.af_dash_.full;
registers.bc_dash = src.bc_dash_.full;
registers.de_dash = src.de_dash_.full;
registers.hl_dash = src.hl_dash_.full;
registers.ix = src.ix_.full;
registers.iy = src.iy_.full;
registers.ir = src.ir_.full;
registers.program_counter = src.pc_.full;
registers.stack_pointer = src.sp_.full;
registers.memptr = src.memptr_.full;
registers.interrupt_mode = src.interrupt_mode_;
registers.iff1 = src.iff1_;
registers.iff2 = src.iff2_;
// Inputs.
inputs.irq = src.irq_line_;
inputs.nmi = src.nmi_line_;
inputs.wait = src.wait_line_;
inputs.bus_request = src.bus_request_line_;
// Execution State.
execution_state.is_halted = src.halt_mask_ == 0x00;
execution_state.requests = src.request_status_;
execution_state.last_requests = src.last_request_status_;
execution_state.temp8 = src.temp8_;
execution_state.temp16 = src.temp16_.full;
execution_state.operation = src.operation_;
execution_state.flag_adjustment_history = src.flag_adjustment_history_;
execution_state.pc_increment = src.pc_increment_;
execution_state.refresh_address = src.refresh_addr_.full;
execution_state.half_cycles_into_step = src.number_of_cycles_.as<int>();
// Search for the current holder of the scheduled_program_counter_.
#define ContainedBy(x) (src.scheduled_program_counter_ >= &src.x[0]) && (src.scheduled_program_counter_ < &src.x[src.x.size()])
#define Populate(x, y) \
execution_state.phase = ExecutionState::Phase::x; \
execution_state.steps_into_phase = int(src.scheduled_program_counter_ - &src.y[0]);
if(ContainedBy(conditional_call_untaken_program_)) {
Populate(UntakenConditionalCall, conditional_call_untaken_program_);
} else if(ContainedBy(reset_program_)) {
Populate(Reset, reset_program_);
} else if(ContainedBy(irq_program_[0])) {
Populate(IRQMode0, irq_program_[0]);
} else if(ContainedBy(irq_program_[1])) {
Populate(IRQMode1, irq_program_[1]);
} else if(ContainedBy(irq_program_[2])) {
Populate(IRQMode2, irq_program_[2]);
} else if(ContainedBy(nmi_program_)) {
Populate(NMI, nmi_program_);
} else {
if(src.current_instruction_page_ == &src.base_page_) {
execution_state.instruction_page = 0;
} else if(src.current_instruction_page_ == &src.ed_page_) {
execution_state.instruction_page = 0xed;
} else if(src.current_instruction_page_ == &src.fd_page_) {
execution_state.instruction_page = 0xfd;
} else if(src.current_instruction_page_ == &src.dd_page_) {
execution_state.instruction_page = 0xdd;
} else if(src.current_instruction_page_ == &src.cb_page_) {
execution_state.instruction_page = 0xcb;
} else if(src.current_instruction_page_ == &src.fdcb_page_) {
execution_state.instruction_page = 0xfdcb;
} else if(src.current_instruction_page_ == &src.ddcb_page_) {
execution_state.instruction_page = 0xddcb;
}
if(ContainedBy(current_instruction_page_->fetch_decode_execute)) {
Populate(FetchDecode, current_instruction_page_->fetch_decode_execute);
} else {
// There's no need to determine which opcode because that knowledge is already
// contained in the dedicated opcode field.
Populate(Operation, current_instruction_page_->instructions[src.operation_ & src.halt_mask_]);
}
}
assert(execution_state.steps_into_phase >= 0);
#undef Populate
#undef ContainedBy
}
void State::apply(ProcessorBase &target) {
// Registers.
target.a_ = registers.a;
target.set_flags(registers.flags);
target.bc_.full = registers.bc;
target.de_.full = registers.de;
target.hl_.full = registers.hl;
target.af_dash_.full = registers.af_dash;
target.bc_dash_.full = registers.bc_dash;
target.de_dash_.full = registers.de_dash;
target.hl_dash_.full = registers.hl_dash;
target.ix_.full = registers.ix;
target.iy_.full = registers.iy;
target.ir_.full = registers.ir;
target.pc_.full = registers.program_counter;
target.sp_.full = registers.stack_pointer;
target.memptr_.full = registers.memptr;
target.interrupt_mode_ = registers.interrupt_mode;
target.iff1_ = registers.iff1;
target.iff2_ = registers.iff2;
// Inputs.
target.irq_line_ = inputs.irq;
target.nmi_line_ = inputs.nmi;
target.wait_line_ = inputs.wait;
target.bus_request_line_ = inputs.bus_request;
// Execution State.
target.halt_mask_ = execution_state.is_halted ? 0x00 : 0xff;
target.request_status_ = execution_state.requests;
target.last_request_status_ = execution_state.last_requests;
target.temp8_ = execution_state.temp8;
target.temp16_.full = execution_state.temp16;
target.operation_ = execution_state.operation;
target.flag_adjustment_history_ = execution_state.flag_adjustment_history;
target.pc_increment_ = execution_state.pc_increment;
target.refresh_addr_.full = execution_state.refresh_address;
target.number_of_cycles_ = HalfCycles(execution_state.half_cycles_into_step);
switch(execution_state.instruction_page) {
default: target.current_instruction_page_ = &target.base_page_; break;
case 0xed: target.current_instruction_page_ = &target.ed_page_; break;
case 0xdd: target.current_instruction_page_ = &target.dd_page_; break;
case 0xcb: target.current_instruction_page_ = &target.cb_page_; break;
case 0xfd: target.current_instruction_page_ = &target.fd_page_; break;
case 0xfdcb: target.current_instruction_page_ = &target.fdcb_page_; break;
case 0xddcb: target.current_instruction_page_ = &target.ddcb_page_; break;
}
switch(execution_state.phase) {
case ExecutionState::Phase::UntakenConditionalCall: target.scheduled_program_counter_ = &target.conditional_call_untaken_program_[0]; break;
case ExecutionState::Phase::Reset: target.scheduled_program_counter_ = &target.reset_program_[0]; break;
case ExecutionState::Phase::IRQMode0: target.scheduled_program_counter_ = &target.irq_program_[0][0]; break;
case ExecutionState::Phase::IRQMode1: target.scheduled_program_counter_ = &target.irq_program_[1][0]; break;
case ExecutionState::Phase::IRQMode2: target.scheduled_program_counter_ = &target.irq_program_[2][0]; break;
case ExecutionState::Phase::NMI: target.scheduled_program_counter_ = &target.nmi_program_[0]; break;
case ExecutionState::Phase::FetchDecode: target.scheduled_program_counter_ = &target.current_instruction_page_->fetch_decode_execute[0]; break;
case ExecutionState::Phase::Operation: target.scheduled_program_counter_ = target.current_instruction_page_->instructions[target.operation_]; break;
}
target.scheduled_program_counter_ += execution_state.steps_into_phase;
}
// Boilerplate follows here, to establish 'reflection'.
State::State() {
if(needs_declare()) {
DeclareField(registers);
DeclareField(execution_state);
DeclareField(inputs);
}
}
State::Registers::Registers() {
if(needs_declare()) {
DeclareField(a);
DeclareField(flags);
DeclareField(bc);
DeclareField(de);
DeclareField(hl);
DeclareField(af_dash); // TODO: is there any disadvantage to declaring these for reflective
DeclareField(bc_dash); // purposes as AF', BC', etc?
DeclareField(de_dash);
DeclareField(hl_dash);
DeclareField(ix);
DeclareField(iy);
DeclareField(ir);
DeclareField(program_counter);
DeclareField(stack_pointer);
DeclareField(interrupt_mode);
DeclareField(iff1);
DeclareField(iff2);
DeclareField(memptr);
}
}
State::ExecutionState::ExecutionState() {
if(needs_declare()) {
DeclareField(is_halted);
DeclareField(requests);
DeclareField(last_requests);
DeclareField(temp8);
DeclareField(operation);
DeclareField(temp16);
DeclareField(flag_adjustment_history);
DeclareField(pc_increment);
DeclareField(refresh_address);
AnnounceEnum(Phase);
DeclareField(phase);
DeclareField(half_cycles_into_step);
DeclareField(steps_into_phase);
DeclareField(instruction_page);
}
}
State::Inputs::Inputs() {
if(needs_declare()) {
DeclareField(irq);
DeclareField(nmi);
DeclareField(bus_request);
DeclareField(wait);
}
}