mirror of
https://github.com/TomHarte/CLK.git
synced 2024-12-11 15:49:38 +00:00
319 lines
8.8 KiB
C++
319 lines
8.8 KiB
C++
//
|
||
// OPL2.cpp
|
||
// Clock Signal
|
||
//
|
||
// Created by Thomas Harte on 02/04/2020.
|
||
// Copyright © 2020 Thomas Harte. all rights reserved.
|
||
//
|
||
|
||
#include "OPL2.hpp"
|
||
|
||
#include <cassert>
|
||
#include <cmath>
|
||
|
||
using namespace Yamaha::OPL;
|
||
|
||
template <typename Child>
|
||
OPLBase<Child>::OPLBase(Concurrency::DeferringAsyncTaskQueue &task_queue) : task_queue_(task_queue) {}
|
||
|
||
template <typename Child>
|
||
void OPLBase<Child>::write(uint16_t address, uint8_t value) {
|
||
if(address & 1) {
|
||
static_cast<Child *>(this)->write_register(selected_register_, value);
|
||
} else {
|
||
selected_register_ = value;
|
||
}
|
||
}
|
||
|
||
template class Yamaha::OPL::OPLBase<Yamaha::OPL::OPLL>;
|
||
template class Yamaha::OPL::OPLBase<Yamaha::OPL::OPL2>;
|
||
|
||
|
||
OPLL::OPLL(Concurrency::DeferringAsyncTaskQueue &task_queue, int audio_divider, bool is_vrc7): OPLBase(task_queue), audio_divider_(audio_divider) {
|
||
// Due to the way that sound mixing works on the OPLL, the audio divider may not
|
||
// be larger than 2.
|
||
assert(audio_divider <= 2);
|
||
|
||
// Install fixed instruments.
|
||
const uint8_t *patch_set = is_vrc7 ? vrc7_patch_set : opll_patch_set;
|
||
for(int c = 0; c < 15; ++c) {
|
||
setup_fixed_instrument(c+1, patch_set);
|
||
patch_set += 8;
|
||
}
|
||
|
||
// Install rhythm patches.
|
||
for(int c = 0; c < 3; ++c) {
|
||
setup_fixed_instrument(c+16, &percussion_patch_set[c * 8]);
|
||
}
|
||
|
||
// Set default modulators.
|
||
for(int c = 0; c < 9; ++c) {
|
||
channels_[c].modulator = &operators_[0];
|
||
}
|
||
}
|
||
|
||
bool OPLL::is_zero_level() {
|
||
// for(int c = 0; c < 9; ++c) {
|
||
// if(channels_[c].is_audible()) return false;
|
||
// }
|
||
return false;
|
||
}
|
||
|
||
void OPLL::get_samples(std::size_t number_of_samples, std::int16_t *target) {
|
||
// Both the OPLL and the OPL2 divide the input clock by 72 to get the base tick frequency;
|
||
// unlike the OPL2 the OPLL time-divides the output for 'mixing'.
|
||
|
||
const int update_period = 72 / audio_divider_;
|
||
const int channel_output_period = 8 / audio_divider_;
|
||
|
||
// Fill in any leftover from the previous session.
|
||
if(audio_offset_) {
|
||
while(audio_offset_ < update_period && number_of_samples) {
|
||
*target = int16_t(channels_[audio_offset_ / channel_output_period].level);
|
||
++target;
|
||
++audio_offset_;
|
||
--number_of_samples;
|
||
}
|
||
audio_offset_ = 0;
|
||
}
|
||
|
||
// End now if that provided everything that was asked for.
|
||
if(!number_of_samples) return;
|
||
|
||
int total_updates = int(number_of_samples) / update_period;
|
||
number_of_samples %= size_t(update_period);
|
||
audio_offset_ = int(number_of_samples);
|
||
|
||
while(total_updates--) {
|
||
update_all_chanels();
|
||
|
||
for(int c = 0; c < update_period; ++c) {
|
||
*target = int16_t(channels_[c / channel_output_period].level);
|
||
++target;
|
||
}
|
||
}
|
||
|
||
// If there are any other spots remaining, fill them.
|
||
if(number_of_samples) {
|
||
update_all_chanels();
|
||
|
||
for(int c = 0; c < int(number_of_samples); ++c) {
|
||
*target = int16_t(channels_[c / channel_output_period].level);
|
||
++target;
|
||
}
|
||
}
|
||
}
|
||
|
||
void OPLL::set_sample_volume_range(std::int16_t range) {
|
||
total_volume_ = range;
|
||
}
|
||
|
||
uint8_t OPLL::read(uint16_t address) {
|
||
// I've seen mention of an undocumented two-bit status register. I don't yet know what is in it.
|
||
return 0xff;
|
||
}
|
||
|
||
void OPLL::write_register(uint8_t address, uint8_t value) {
|
||
// The OPLL doesn't have timers or other non-audio functions, so all writes
|
||
// go to the audio queue.
|
||
task_queue_.defer([this, address, value] {
|
||
// The first 8 locations are used to define the custom instrument, and have
|
||
// exactly the same format as the patch set arrays at the head of this file.
|
||
if(address < 8) {
|
||
custom_instrument_[address] = value;
|
||
|
||
// Update whatever that did to the instrument.
|
||
setup_fixed_instrument(0, custom_instrument_);
|
||
return;
|
||
}
|
||
|
||
// Register 0xe is a cut-down version of the OPLL's register 0xbd.
|
||
if(address == 0xe) {
|
||
depth_rhythm_control_ = value & 0x3f;
|
||
return;
|
||
}
|
||
|
||
const auto index = address & 0xf;
|
||
if(index > 8) return;
|
||
|
||
switch(address & 0xf0) {
|
||
case 0x30:
|
||
// Select an instrument in the top nibble, set a channel volume in the lower.
|
||
channels_[index].overrides.attenuation = value & 0xf;
|
||
channels_[index].modulator = &operators_[(value >> 4) * 2];
|
||
break;
|
||
|
||
case 0x10: channels_[index].set_frequency_low(value); break;
|
||
|
||
case 0x20:
|
||
// Set sustain on/off, key on/off, octave and a single extra bit of frequency.
|
||
// So they're a lot like OPLL registers 0xb0 to 0xb8, but not identical.
|
||
channels_[index].set_9bit_frequency_octave_key_on(value);
|
||
channels_[index].overrides.use_sustain_level = value & 0x20;
|
||
break;
|
||
|
||
default: break;
|
||
}
|
||
});
|
||
}
|
||
|
||
void OPLL::setup_fixed_instrument(int number, const uint8_t *data) {
|
||
auto modulator = &operators_[number * 2];
|
||
auto carrier = &operators_[number * 2 + 1];
|
||
|
||
modulator->set_am_vibrato_hold_sustain_ksr_multiple(data[0]);
|
||
carrier->set_am_vibrato_hold_sustain_ksr_multiple(data[1]);
|
||
modulator->set_scaling_output(data[2]);
|
||
|
||
// Set waveforms — only sine and halfsine are available.
|
||
modulator->set_waveform((data[3] >> 3) & 1);
|
||
carrier->set_waveform((data[3] >> 4) & 1);
|
||
|
||
// TODO: data[3] b0-b2: modulator feedback level
|
||
// TODO: data[3] b6, b7: carrier key-scale level
|
||
|
||
// Set ADSR parameters.
|
||
modulator->set_attack_decay(data[4]);
|
||
carrier->set_attack_decay(data[5]);
|
||
modulator->set_sustain_release(data[6]);
|
||
carrier->set_sustain_release(data[7]);
|
||
}
|
||
|
||
void OPLL::update_all_chanels() {
|
||
if(depth_rhythm_control_ & 0x20) {
|
||
// Rhythm mode. Somehow?
|
||
|
||
// Melodic channels. Easy!
|
||
for(int c = 0; c < 6; ++ c) {
|
||
channels_[c].level = (channels_[c].update() * total_volume_) >> 14;
|
||
}
|
||
} else {
|
||
// All melody, all the time.
|
||
for(int c = 0; c < 9; ++ c) {
|
||
channels_[c].level = (channels_[c].update() * total_volume_) >> 14;
|
||
}
|
||
}
|
||
|
||
// channels_[2].level = (channels_[2].update() * total_volume_) >> 14;
|
||
}
|
||
|
||
/*
|
||
template <Personality personality>
|
||
void OPL2<personality>::get_samples(std::size_t number_of_samples, std::int16_t *target) {
|
||
// TODO.
|
||
// out = exp(logsin(phase2 + exp(logsin(phase1) + gain1)) + gain2)
|
||
|
||
// Melodic channels are:
|
||
//
|
||
// Channel Operator 1 Operator 2
|
||
// 0 0 3
|
||
// 1 1 4
|
||
// 2 2 5
|
||
// 3 6 9
|
||
// 4 7 10
|
||
// 5 8 11
|
||
// 6 12 15
|
||
// 7 13 16
|
||
// 8 14 17
|
||
//
|
||
// In percussion mode, only channels 0–5 are use as melodic, with 6, 7 and 8 being
|
||
// replaced by:
|
||
//
|
||
// Bass drum, using operators 12 and 15;
|
||
// Snare, using operator 16;
|
||
// Tom tom, using operator 14,
|
||
// Cymbal, using operator 17; and
|
||
// Symbol, using operator 13.
|
||
}
|
||
|
||
*/
|
||
|
||
void OPL2::write_register(uint8_t address, uint8_t value) {
|
||
|
||
// Deal with timer changes synchronously.
|
||
switch(address) {
|
||
case 0x02: timers_[0] = value; return;
|
||
case 0x03: timers_[1] = value; return;
|
||
case 0x04: timer_control_ = value; return;
|
||
// TODO from register 4:
|
||
// b7 = IRQ reset;
|
||
// b6/b5 = timer 1/2 mask (irq enabling flags, I think?)
|
||
// b4/b3 = timer 2/1 start (seemingly the opposite order to b6/b5?)
|
||
|
||
default: break;
|
||
}
|
||
|
||
// Enqueue any changes that affect audio output.
|
||
task_queue_.enqueue([this, address, value] {
|
||
//
|
||
// Modal modifications.
|
||
//
|
||
|
||
switch(address) {
|
||
case 0x01: waveform_enable_ = value & 0x20; break;
|
||
case 0x08:
|
||
// b7: "composite sine wave mode on/off"?
|
||
csm_keyboard_split_ = value;
|
||
// b6: "Controls the split point of the keyboard. When 0, the keyboard split is the
|
||
// second bit from the bit 8 of the F-Number. When 1, the MSB of the F-Number is used."
|
||
break;
|
||
case 0xbd: depth_rhythm_control_ = value; break;
|
||
|
||
default: break;
|
||
}
|
||
|
||
|
||
//
|
||
// Operator modifications.
|
||
//
|
||
|
||
if((address >= 0x20 && address < 0xa0) || address >= 0xe0) {
|
||
// The 18 operators are spreat out across 22 addresses; each group of
|
||
// six is framed within an eight-byte area thusly:
|
||
constexpr int operator_by_address[] = {
|
||
0, 1, 2, 3, 4, 5, -1, -1,
|
||
6, 7, 8, 9, 10, 11, -1, -1,
|
||
12, 13, 14, 15, 16, 17, -1, -1,
|
||
-1, -1, -1, -1, -1, -1, -1, -1,
|
||
};
|
||
|
||
const auto index = operator_by_address[address & 0x1f];
|
||
if(index == -1) return;
|
||
|
||
switch(address & 0xe0) {
|
||
case 0x20: operators_[index].set_am_vibrato_hold_sustain_ksr_multiple(value); break;
|
||
case 0x40: operators_[index].set_scaling_output(value); break;
|
||
case 0x60: operators_[index].set_attack_decay(value); break;
|
||
case 0x80: operators_[index].set_sustain_release(value); break;
|
||
case 0xe0: operators_[index].set_waveform(value); break;
|
||
|
||
default: break;
|
||
}
|
||
}
|
||
|
||
|
||
//
|
||
// Channel modifications.
|
||
//
|
||
|
||
const auto index = address & 0xf;
|
||
if(index > 8) return;
|
||
|
||
switch(address & 0xf0) {
|
||
case 0xa0: channels_[index].set_frequency_low(value); break;
|
||
case 0xb0: channels_[index].set_10bit_frequency_octave_key_on(value); break;
|
||
case 0xc0: channels_[index].set_feedback_mode(value); break;
|
||
|
||
default: break;
|
||
}
|
||
});
|
||
}
|
||
|
||
uint8_t OPL2::read(uint16_t address) {
|
||
// TODO. There's a status register where:
|
||
// b7 = IRQ status (set if interrupt request ongoing)
|
||
// b6 = timer 1 flag (set if timer 1 expired)
|
||
// b5 = timer 2 flag
|
||
return 0xff;
|
||
}
|