1
0
mirror of https://github.com/TomHarte/CLK.git synced 2025-01-20 21:30:59 +00:00
CLK/OSBindings/Mac/Clock SignalTests/ARMDecoderTests.mm
2024-07-08 00:20:54 +02:00

548 lines
14 KiB
Plaintext

//
// ARMDecoderTests.m
// Clock Signal
//
// Created by Thomas Harte on 16/02/2024.
// Copyright 2024 Thomas Harte. All rights reserved.
//
#import <XCTest/XCTest.h>
#include "../../../InstructionSets/ARM/Disassembler.hpp"
#include "../../../InstructionSets/ARM/Executor.hpp"
#include "NSData+dataWithContentsOfGZippedFile.h"
#include <map>
#include <sstream>
#include <vector>
using namespace InstructionSet::ARM;
namespace {
struct MemoryLedger {
template <typename IntT>
bool write(uint32_t address, IntT source, Mode, bool) {
const auto is_faulty = [&](uint32_t address) -> bool {
return
write_pointer == writes.size() ||
writes[write_pointer].size != sizeof(IntT) ||
writes[write_pointer].address != address ||
writes[write_pointer].value != source;
};
// The test set sometimes worries about write alignment, sometimes not...
if(is_faulty(address) && is_faulty(address & static_cast<uint32_t>(~3))) {
return false;
}
++write_pointer;
return true;
}
template <typename IntT>
bool read(uint32_t address, IntT &source, Mode, bool) {
const auto is_faulty = [&](uint32_t address) -> bool {
return
read_pointer == reads.size() ||
reads[read_pointer].size != sizeof(IntT) ||
reads[read_pointer].address != address;
};
// As per writes; the test set sometimes forces alignment on the record, sometimes not...
if(is_faulty(address) && is_faulty(address & static_cast<uint32_t>(~3))) {
return false;
}
source = reads[read_pointer].value;
++read_pointer;
return true;
}
struct Access {
size_t size;
uint32_t address;
uint32_t value;
};
template <typename IntT>
void add_access(bool is_read, uint32_t address, IntT value) {
auto &read = is_read ? reads.emplace_back() : writes.emplace_back();
read.address = address;
read.value = value;
read.size = sizeof(IntT);
}
std::vector<Access> reads;
std::vector<Access> writes;
size_t read_pointer = 0;
size_t write_pointer = 0;
};
}
@interface ARMDecoderTests : XCTestCase
@end
@implementation ARMDecoderTests
- (void)testBarrelShifterLogicalLeft {
uint32_t value;
uint32_t carry;
// Test a shift by 1 into carry.
value = 0x8000'0000;
shift<ShiftType::LogicalLeft, true, true>(value, 1, carry);
XCTAssertEqual(value, 0);
XCTAssertNotEqual(carry, 0);
// Test a shift by 18 into carry.
value = 0x0000'4001;
shift<ShiftType::LogicalLeft, true, true>(value, 18, carry);
XCTAssertEqual(value, 0x4'0000);
XCTAssertNotEqual(carry, 0);
// Test a shift by 17, not generating carry.
value = 0x0000'4001;
shift<ShiftType::LogicalLeft, true, true>(value, 17, carry);
XCTAssertEqual(value, 0x8002'0000);
XCTAssertEqual(carry, 0);
}
- (void)testBarrelShifterLogicalRight {
uint32_t value;
uint32_t carry;
// Test successive shifts by 4; one generating carry and one not.
value = 0x12345678;
shift<ShiftType::LogicalRight, true, true>(value, 4, carry);
XCTAssertEqual(value, 0x1234567);
XCTAssertNotEqual(carry, 0);
shift<ShiftType::LogicalRight, true, true>(value, 4, carry);
XCTAssertEqual(value, 0x123456);
XCTAssertEqual(carry, 0);
// Test shift by 1.
value = 0x8003001;
shift<ShiftType::LogicalRight, true, true>(value, 1, carry);
XCTAssertEqual(value, 0x4001800);
XCTAssertNotEqual(carry, 0);
// Test a shift by greater than 32.
value = 0xffff'ffff;
shift<ShiftType::LogicalRight, true, true>(value, 33, carry);
XCTAssertEqual(value, 0);
XCTAssertEqual(carry, 0);
// Test shifts by 32: result is always 0, carry is whatever was in bit 31.
value = 0xffff'ffff;
shift<ShiftType::LogicalRight, true, true>(value, 32, carry);
XCTAssertEqual(value, 0);
XCTAssertNotEqual(carry, 0);
value = 0x7fff'ffff;
shift<ShiftType::LogicalRight, true, true>(value, 32, carry);
XCTAssertEqual(value, 0);
XCTAssertEqual(carry, 0);
// Test that a logical right shift by 0 is the same as a shift by 32.
value = 0xffff'ffff;
shift<ShiftType::LogicalRight, true, true>(value, 0, carry);
XCTAssertEqual(value, 0);
XCTAssertNotEqual(carry, 0);
}
- (void)testBarrelShifterArithmeticRight {
uint32_t value;
uint32_t carry;
// Test a short negative shift.
value = 0x8000'0030;
shift<ShiftType::ArithmeticRight, true, true>(value, 1, carry);
XCTAssertEqual(value, 0xc000'0018);
XCTAssertEqual(carry, 0);
// Test a medium negative shift without carry.
value = 0xffff'0000;
shift<ShiftType::ArithmeticRight, true, true>(value, 11, carry);
XCTAssertEqual(value, 0xffff'ffe0);
XCTAssertEqual(carry, 0);
// Test a medium negative shift with carry.
value = 0xffc0'0000;
shift<ShiftType::ArithmeticRight, true, true>(value, 23, carry);
XCTAssertEqual(value, 0xffff'ffff);
XCTAssertNotEqual(carry, 0);
// Test a long negative shift.
value = 0x8000'0000;
shift<ShiftType::ArithmeticRight, true, true>(value, 32, carry);
XCTAssertEqual(value, 0xffff'ffff);
XCTAssertNotEqual(carry, 0);
// Test a positive shift.
value = 0x0123'0031;
shift<ShiftType::ArithmeticRight, true, true>(value, 3, carry);
XCTAssertEqual(value, 0x24'6006);
XCTAssertEqual(carry, 0);
}
- (void)testBarrelShifterRotateRight {
uint32_t value;
uint32_t carry;
// Test a short rotate by one hex digit.
value = 0xabcd'1234;
shift<ShiftType::RotateRight, true, true>(value, 4, carry);
XCTAssertEqual(value, 0x4abc'd123);
XCTAssertEqual(carry, 0);
// Test a longer rotate, with carry.
value = 0xa5f9'6342;
shift<ShiftType::RotateRight, true, true>(value, 17, carry);
XCTAssertEqual(value, 0xb1a1'52fc);
XCTAssertNotEqual(carry, 0);
// Test a rotate by 32 without carry.
value = 0x385f'7dce;
shift<ShiftType::RotateRight, true, true>(value, 32, carry);
XCTAssertEqual(value, 0x385f'7dce);
XCTAssertEqual(carry, 0);
// Test a rotate by 32 with carry.
value = 0xfecd'ba12;
shift<ShiftType::RotateRight, true, true>(value, 32, carry);
XCTAssertEqual(value, 0xfecd'ba12);
XCTAssertNotEqual(carry, 0);
// Test a rotate through carry, carry not set.
value = 0x123f'abcf;
carry = 0;
shift<ShiftType::RotateRight, true, true>(value, 0, carry);
XCTAssertEqual(value, 0x091f'd5e7);
XCTAssertNotEqual(carry, 0);
// Test a rotate through carry, carry set.
value = 0x123f'abce;
carry = 1;
shift<ShiftType::RotateRight, true, true>(value, 0, carry);
XCTAssertEqual(value, 0x891f'd5e7);
XCTAssertEqual(carry, 0);
}
- (void)testRegisterModes {
Registers r;
// Set all user mode registers to their indices.
r.set_mode(Mode::User);
for(int c = 0; c < 15; c++) {
r[c] = c;
}
// Set FIQ registers.
r.set_mode(Mode::FIQ);
for(int c = 8; c < 15; c++) {
r[c] = c | 0x100;
}
// Set IRQ registers.
r.set_mode(Mode::IRQ);
for(int c = 13; c < 15; c++) {
r[c] = c | 0x200;
}
// Set supervisor registers.
r.set_mode(Mode::FIQ);
r.set_mode(Mode::User);
r.set_mode(Mode::Supervisor);
for(int c = 13; c < 15; c++) {
r[c] = c | 0x300;
}
// Check all results.
r.set_mode(Mode::User);
r.set_mode(Mode::FIQ);
for(int c = 0; c < 8; c++) {
XCTAssertEqual(r[c], c);
}
for(int c = 8; c < 15; c++) {
XCTAssertEqual(r[c], c | 0x100);
}
r.set_mode(Mode::FIQ);
r.set_mode(Mode::IRQ);
r.set_mode(Mode::User);
r.set_mode(Mode::FIQ);
r.set_mode(Mode::Supervisor);
for(int c = 0; c < 13; c++) {
XCTAssertEqual(r[c], c);
}
for(int c = 13; c < 15; c++) {
XCTAssertEqual(r[c], c | 0x300);
}
r.set_mode(Mode::FIQ);
r.set_mode(Mode::User);
for(int c = 0; c < 15; c++) {
XCTAssertEqual(r[c], c);
}
r.set_mode(Mode::Supervisor);
r.set_mode(Mode::IRQ);
for(int c = 0; c < 13; c++) {
XCTAssertEqual(r[c], c);
}
for(int c = 13; c < 15; c++) {
XCTAssertEqual(r[c], c | 0x200);
}
}
- (void)testFlags {
Registers regs;
for(int c = 0; c < 256; c++) {
regs.set_mode(Mode::Supervisor);
const uint32_t status = ((c & 0xfc) << 26) | (c & 0x03);
regs.set_status(status);
XCTAssertEqual(status, regs.status());
}
}
- (void)testMessy {
NSData *const tests =
[NSData dataWithContentsOfGZippedFile:
[[NSBundle bundleForClass:[self class]]
pathForResource:@"test"
ofType:@"txt.gz"
inDirectory:@"Messy ARM"]
];
const std::string text((char *)tests.bytes);
std::istringstream input(text);
input >> std::hex;
static constexpr auto model = Model::ARMv2with32bitAddressing;
using Exec = Executor<model, MemoryLedger>;
std::unique_ptr<Exec> test;
struct FailureRecord {
int count = 0;
int first = 0;
NSString *sample;
};
std::map<uint32_t, FailureRecord> failures;
uint32_t opcode = 0;
bool ignore_opcode = false;
uint32_t masks[16];
uint32_t test_pc_offset = 8;
int test_count = 0;
while(!input.eof()) {
std::string label;
input >> label;
if(label == "**") {
memset(masks, 0xff, sizeof(masks));
ignore_opcode = false;
test_pc_offset = 8;
input >> opcode;
test_count = 0;
InstructionSet::ARM::Disassembler<model> disassembler;
InstructionSet::ARM::dispatch<model>(opcode, disassembler);
static constexpr uint32_t pc_address_mask = 0x03ff'fffc;
const auto instruction = disassembler.last();
switch(instruction.operation) {
case Instruction::Operation::BL:
// Tests don't multiplex flags into PC for storage to R14.
masks[14] = pc_address_mask;
break;
case Instruction::Operation::SWI:
// Tested CPU either doesn't switch into supervisor mode, or
// is sufficiently accurate in its pipeline that register
// changes haven't happened yet.
ignore_opcode = true;
break;
case Instruction::Operation::MOV:
// MOV from PC will pick up the address only in the test cases.
if(
instruction.operand2.type == Operand::Type::Register &&
instruction.operand2.value == 15
) {
masks[instruction.destination.value] = pc_address_mask;
}
// MOV to PC; there are both pipeline capture errors in the test
// set and its ARM won't change privilege level on a write to R15.
// Similarly, if the PC is operand 2 then it'll also contain the
// PSR on an ARM2 but not in the test set.
if(instruction.destination.value == 15 || instruction.operand2.value == 15) {
ignore_opcode = true;
}
break;
case Instruction::Operation::TEQ:
case Instruction::Operation::TST:
case Instruction::Operation::ORR:
case Instruction::Operation::BIC:
case Instruction::Operation::SUB:
case Instruction::Operation::ADD:
// Routinely used to change privilege level on an ARM2 but
// doesn't seem to have that effect on the ARM used to generate
// the test set.
if(instruction.destination.value == 15 || instruction.operand2.value == 15) {
ignore_opcode = true;
}
break;
case Instruction::Operation::STR:
case Instruction::Operation::LDR:
// Neither loads nor stores with R15 are matched to ARM2 behaviour by the test source.
ignore_opcode = instruction.destination.value == 15;
break;
case Instruction::Operation::STM:
case Instruction::Operation::LDM:
// If the PC is involved, just skip the test; PC/PSR differences abound.
ignore_opcode = instruction.operand1.value & (1 << 15);
break;
case Instruction::Operation::MCR:
case Instruction::Operation::MRC:
// The test case doesn't seem to throw on a missing coprocessor.
ignore_opcode = true;
break;
default: break;
}
continue;
}
if(ignore_opcode) continue;
if(label == "Before:" || label == "After:") {
// Read register state.
uint32_t regs[16];
for(int c = 0; c < 16; c++) {
input >> regs[c];
}
if(!test) test = std::make_unique<Exec>();
auto &registers = test->registers();
if(label == "Before:") {
// This is the start of a new test.
// Establish implicit register values.
for(uint32_t c = 0; c < 15; c++) {
registers.set_mode(Mode::FIQ);
registers[c] = 0x200 | c;
registers.set_mode(Mode::Supervisor);
registers[c] = 0x300 | c;
registers.set_mode(Mode::IRQ);
registers[c] = 0x400 | c;
registers.set_mode(Mode::User);
registers[c] = 0x100 | c;
}
// Apply provided state.
registers.set_mode(Mode::Supervisor); // To make sure the actual mode is applied.
registers.set_pc(regs[15] - 8);
registers.set_status(regs[15]);
for(uint32_t c = 0; c < 15; c++) {
registers[c] = regs[c];
}
} else {
// Execute test and compare.
++test_count;
if(opcode == 0xe1a0ae2f && test_count == 2) {
printf("");
}
execute(opcode, *test);
NSMutableString *error = nil;
for(uint32_t c = 0; c < 15; c++) {
if((regs[c] & masks[c]) != (registers[c] & masks[c])) {
if(!error) error = [[NSMutableString alloc] init]; else [error appendString:@"; "];
[error appendFormat:@"R%d %08x v %08x", c, regs[c], registers[c]];
}
}
if((regs[15] & masks[15]) != (registers.pc_status(test_pc_offset) & masks[15])) {
if(!error) error = [[NSMutableString alloc] init]; else [error appendString:@"; "];
[error appendFormat:@"; PC/PSR %08x/%08x v %08x/%08x",
regs[15] & 0x03ff'fffc, regs[15] & ~0x03ff'fffc,
registers.pc(test_pc_offset), registers.status()];
}
if(error) {
++failures[opcode].count;
if(failures[opcode].count == 1) {
failures[opcode].first = test_count;
failures[opcode].sample = error;
}
}
test.reset();
}
continue;
}
// TODO: supply information below to ledger, and then use and test it.
uint32_t address;
uint32_t value;
input >> address >> value;
if(label == "r.b") {
// Capture a byte read for provision.
test->bus.add_access<uint8_t>(true, address, value);
continue;
}
if(label == "r.w") {
// Capture a word read for provision.
test->bus.add_access<uint32_t>(true, address, value);
continue;
}
if(label == "w.b") {
// Capture a byte write for comparison.
test->bus.add_access<uint8_t>(false, address, value);
continue;
}
if(label == "w.w") {
// Capture a word write for comparison.
test->bus.add_access<uint32_t>(false, address, value);
continue;
}
}
XCTAssertTrue(failures.empty());
if(!failures.empty()) {
NSLog(@"Failed %zu instructions; examples below", failures.size());
for(const auto &pair: failures) {
NSLog(@"%08x, %d total, test %d: %@", pair.first, pair.second.count, pair.second.first, pair.second.sample);
}
}
for(const auto &pair: failures) {
printf("%08x ", pair.first);
}
}
@end