mirror of
https://github.com/TomHarte/CLK.git
synced 2025-02-20 14:29:11 +00:00
434 lines
12 KiB
C++
434 lines
12 KiB
C++
//
|
|
// PCCompatible.cpp
|
|
// Clock Signal
|
|
//
|
|
// Created by Thomas Harte on 15/11/2023.
|
|
// Copyright © 2023 Thomas Harte. All rights reserved.
|
|
//
|
|
|
|
#include "PCCompatible.hpp"
|
|
|
|
#include "../../InstructionSets/x86/Decoder.hpp"
|
|
#include "../../InstructionSets/x86/Flags.hpp"
|
|
#include "../../InstructionSets/x86/Instruction.hpp"
|
|
#include "../../InstructionSets/x86/Perform.hpp"
|
|
|
|
#include "../ScanProducer.hpp"
|
|
#include "../TimedMachine.hpp"
|
|
|
|
#include <array>
|
|
|
|
namespace PCCompatible {
|
|
|
|
struct Registers {
|
|
public:
|
|
static constexpr bool is_32bit = false;
|
|
|
|
uint8_t &al() { return ax_.halves.low; }
|
|
uint8_t &ah() { return ax_.halves.high; }
|
|
uint16_t &ax() { return ax_.full; }
|
|
|
|
CPU::RegisterPair16 &axp() { return ax_; }
|
|
|
|
uint8_t &cl() { return cx_.halves.low; }
|
|
uint8_t &ch() { return cx_.halves.high; }
|
|
uint16_t &cx() { return cx_.full; }
|
|
|
|
uint8_t &dl() { return dx_.halves.low; }
|
|
uint8_t &dh() { return dx_.halves.high; }
|
|
uint16_t &dx() { return dx_.full; }
|
|
|
|
uint8_t &bl() { return bx_.halves.low; }
|
|
uint8_t &bh() { return bx_.halves.high; }
|
|
uint16_t &bx() { return bx_.full; }
|
|
|
|
uint16_t &sp() { return sp_; }
|
|
uint16_t &bp() { return bp_; }
|
|
uint16_t &si() { return si_; }
|
|
uint16_t &di() { return di_; }
|
|
|
|
uint16_t &ip() { return ip_; }
|
|
|
|
uint16_t &es() { return es_; }
|
|
uint16_t &cs() { return cs_; }
|
|
uint16_t &ds() { return ds_; }
|
|
uint16_t &ss() { return ss_; }
|
|
uint16_t es() const { return es_; }
|
|
uint16_t cs() const { return cs_; }
|
|
uint16_t ds() const { return ds_; }
|
|
uint16_t ss() const { return ss_; }
|
|
|
|
void reset() {
|
|
cs_ = 0xffff;
|
|
ip_ = 0;
|
|
}
|
|
|
|
private:
|
|
CPU::RegisterPair16 ax_;
|
|
CPU::RegisterPair16 cx_;
|
|
CPU::RegisterPair16 dx_;
|
|
CPU::RegisterPair16 bx_;
|
|
|
|
uint16_t sp_;
|
|
uint16_t bp_;
|
|
uint16_t si_;
|
|
uint16_t di_;
|
|
uint16_t es_, cs_, ds_, ss_;
|
|
uint16_t ip_;
|
|
};
|
|
|
|
class Segments {
|
|
public:
|
|
Segments(const Registers ®isters) : registers_(registers) {}
|
|
|
|
using Source = InstructionSet::x86::Source;
|
|
|
|
/// Posted by @c perform after any operation which *might* have affected a segment register.
|
|
void did_update(Source segment) {
|
|
switch(segment) {
|
|
default: break;
|
|
case Source::ES: es_base_ = uint32_t(registers_.es()) << 4; break;
|
|
case Source::CS: cs_base_ = uint32_t(registers_.cs()) << 4; break;
|
|
case Source::DS: ds_base_ = uint32_t(registers_.ds()) << 4; break;
|
|
case Source::SS: ss_base_ = uint32_t(registers_.ss()) << 4; break;
|
|
}
|
|
}
|
|
|
|
void reset() {
|
|
did_update(Source::ES);
|
|
did_update(Source::CS);
|
|
did_update(Source::DS);
|
|
did_update(Source::SS);
|
|
}
|
|
|
|
uint32_t es_base_, cs_base_, ds_base_, ss_base_;
|
|
|
|
bool operator ==(const Segments &rhs) const {
|
|
return
|
|
es_base_ == rhs.es_base_ &&
|
|
cs_base_ == rhs.cs_base_ &&
|
|
ds_base_ == rhs.ds_base_ &&
|
|
ss_base_ == rhs.ss_base_;
|
|
}
|
|
|
|
private:
|
|
const Registers ®isters_;
|
|
};
|
|
|
|
// TODO: send writes to the ROM area off to nowhere.
|
|
struct Memory {
|
|
public:
|
|
using AccessType = InstructionSet::x86::AccessType;
|
|
|
|
// Constructor.
|
|
Memory(Registers ®isters, const Segments &segments) : registers_(registers), segments_(segments) {}
|
|
|
|
//
|
|
// Preauthorisation call-ins. Since only an 8088 is currently modelled, all accesses are implicitly authorised.
|
|
//
|
|
void preauthorise_stack_write([[maybe_unused]] uint32_t length) {}
|
|
void preauthorise_stack_read([[maybe_unused]] uint32_t length) {}
|
|
void preauthorise_read([[maybe_unused]] InstructionSet::x86::Source segment, [[maybe_unused]] uint16_t start, [[maybe_unused]] uint32_t length) {}
|
|
void preauthorise_read([[maybe_unused]] uint32_t start, [[maybe_unused]] uint32_t length) {}
|
|
|
|
//
|
|
// Access call-ins.
|
|
//
|
|
|
|
// Accesses an address based on segment:offset.
|
|
template <typename IntT, AccessType type>
|
|
typename InstructionSet::x86::Accessor<IntT, type>::type access(InstructionSet::x86::Source segment, uint16_t offset) {
|
|
const uint32_t physical_address = address(segment, offset);
|
|
|
|
if constexpr (std::is_same_v<IntT, uint16_t>) {
|
|
// If this is a 16-bit access that runs past the end of the segment, it'll wrap back
|
|
// to the start. So the 16-bit value will need to be a local cache.
|
|
if(offset == 0xffff) {
|
|
return split_word<type>(physical_address, address(segment, 0));
|
|
}
|
|
}
|
|
|
|
return access<IntT, type>(physical_address);
|
|
}
|
|
|
|
// Accesses an address based on physical location.
|
|
template <typename IntT, AccessType type>
|
|
typename InstructionSet::x86::Accessor<IntT, type>::type access(uint32_t address) {
|
|
// Dispense with the single-byte case trivially.
|
|
if constexpr (std::is_same_v<IntT, uint8_t>) {
|
|
return memory[address];
|
|
} else if(address != 0xf'ffff) {
|
|
return *reinterpret_cast<IntT *>(&memory[address]);
|
|
} else {
|
|
return split_word<type>(address, 0);
|
|
}
|
|
}
|
|
|
|
template <typename IntT>
|
|
void write_back() {
|
|
if constexpr (std::is_same_v<IntT, uint16_t>) {
|
|
if(write_back_address_[0] != NoWriteBack) {
|
|
memory[write_back_address_[0]] = write_back_value_ & 0xff;
|
|
memory[write_back_address_[1]] = write_back_value_ >> 8;
|
|
write_back_address_[0] = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
//
|
|
// Direct write.
|
|
//
|
|
template <typename IntT>
|
|
void preauthorised_write(InstructionSet::x86::Source segment, uint16_t offset, IntT value) {
|
|
// Bytes can be written without further ado.
|
|
if constexpr (std::is_same_v<IntT, uint8_t>) {
|
|
memory[address(segment, offset) & 0xf'ffff] = value;
|
|
return;
|
|
}
|
|
|
|
// Words that straddle the segment end must be split in two.
|
|
if(offset == 0xffff) {
|
|
memory[address(segment, offset) & 0xf'ffff] = value & 0xff;
|
|
memory[address(segment, 0x0000) & 0xf'ffff] = value >> 8;
|
|
return;
|
|
}
|
|
|
|
const uint32_t target = address(segment, offset) & 0xf'ffff;
|
|
|
|
// Words that straddle the end of physical RAM must also be split in two.
|
|
if(target == 0xf'ffff) {
|
|
memory[0xf'ffff] = value & 0xff;
|
|
memory[0x0'0000] = value >> 8;
|
|
return;
|
|
}
|
|
|
|
// It's safe just to write then.
|
|
*reinterpret_cast<uint16_t *>(&memory[target]) = value;
|
|
}
|
|
|
|
//
|
|
// Helper for instruction fetch.
|
|
//
|
|
std::pair<const uint8_t *, size_t> next_code() {
|
|
const uint32_t start = segments_.cs_base_ + registers_.ip();
|
|
return std::make_pair(&memory[start], 0x10'000 - start);
|
|
}
|
|
|
|
std::pair<const uint8_t *, size_t> all() {
|
|
return std::make_pair(memory.data(), 0x10'000);
|
|
}
|
|
|
|
//
|
|
// Population.
|
|
//
|
|
void install(size_t address, const uint8_t *data, size_t length) {
|
|
std::copy(data, data + length, memory.begin() + std::vector<uint8_t>::difference_type(address));
|
|
}
|
|
|
|
private:
|
|
std::array<uint8_t, 1024*1024> memory{0xff};
|
|
Registers ®isters_;
|
|
const Segments &segments_;
|
|
|
|
uint32_t segment_base(InstructionSet::x86::Source segment) {
|
|
using Source = InstructionSet::x86::Source;
|
|
switch(segment) {
|
|
default: return segments_.ds_base_;
|
|
case Source::ES: return segments_.es_base_;
|
|
case Source::CS: return segments_.cs_base_;
|
|
case Source::SS: return segments_.ss_base_;
|
|
}
|
|
}
|
|
|
|
uint32_t address(InstructionSet::x86::Source segment, uint16_t offset) {
|
|
return (segment_base(segment) + offset) & 0xf'ffff;
|
|
}
|
|
|
|
template <AccessType type>
|
|
typename InstructionSet::x86::Accessor<uint16_t, type>::type
|
|
split_word(uint32_t low_address, uint32_t high_address) {
|
|
if constexpr (is_writeable(type)) {
|
|
write_back_address_[0] = low_address;
|
|
write_back_address_[1] = high_address;
|
|
|
|
// Prepopulate only if this is a modify.
|
|
if constexpr (type == AccessType::ReadModifyWrite) {
|
|
write_back_value_ = uint16_t(memory[write_back_address_[0]] | (memory[write_back_address_[1]] << 8));
|
|
}
|
|
|
|
return write_back_value_;
|
|
} else {
|
|
return uint16_t(memory[low_address] | (memory[high_address] << 8));
|
|
}
|
|
}
|
|
|
|
static constexpr uint32_t NoWriteBack = 0; // A low byte address of 0 can't require write-back.
|
|
uint32_t write_back_address_[2] = {NoWriteBack, NoWriteBack};
|
|
uint16_t write_back_value_;
|
|
};
|
|
|
|
class IO {
|
|
public:
|
|
template <typename IntT> void out([[maybe_unused]] uint16_t port, [[maybe_unused]] IntT value) {
|
|
switch(port) {
|
|
default:
|
|
if constexpr (std::is_same_v<IntT, uint8_t>) {
|
|
printf("Unhandled out: %02x to %04x\n", value, port);
|
|
} else {
|
|
printf("Unhandled out: %04x to %04x\n", value, port);
|
|
}
|
|
break;
|
|
|
|
// On the XT the NMI can be masked by setting bit 7 on I/O port 0xA0.
|
|
case 0x00a0:
|
|
printf("TODO: NMIs %s\n", (value & 0x80) ? "masked" : "unmasked");
|
|
break;
|
|
}
|
|
}
|
|
template <typename IntT> IntT in([[maybe_unused]] uint16_t port) {
|
|
printf("Unhandled in: %04x\n", port);
|
|
return IntT(~0);
|
|
}
|
|
|
|
private:
|
|
|
|
};
|
|
|
|
class FlowController {
|
|
public:
|
|
FlowController(Registers ®isters, Segments &segments) :
|
|
registers_(registers), segments_(segments) {}
|
|
|
|
// Requirements for perform.
|
|
void jump(uint16_t address) {
|
|
registers_.ip() = address;
|
|
}
|
|
|
|
void jump(uint16_t segment, uint16_t address) {
|
|
registers_.cs() = segment;
|
|
segments_.did_update(Segments::Source::CS);
|
|
registers_.ip() = address;
|
|
}
|
|
|
|
void halt() {}
|
|
void wait() {}
|
|
|
|
void repeat_last() {
|
|
should_repeat_ = true;
|
|
}
|
|
|
|
// Other actions.
|
|
void begin_instruction() {
|
|
should_repeat_ = false;
|
|
}
|
|
bool should_repeat() const {
|
|
return should_repeat_;
|
|
}
|
|
|
|
private:
|
|
Registers ®isters_;
|
|
Segments &segments_;
|
|
bool should_repeat_ = false;
|
|
};
|
|
|
|
class ConcreteMachine:
|
|
public Machine,
|
|
public MachineTypes::TimedMachine,
|
|
public MachineTypes::ScanProducer
|
|
{
|
|
public:
|
|
ConcreteMachine(
|
|
[[maybe_unused]] const Analyser::Static::Target &target,
|
|
[[maybe_unused]] const ROMMachine::ROMFetcher &rom_fetcher
|
|
) {
|
|
// This is actually a MIPS count; try 3 million.
|
|
set_clock_rate(3'000'000);
|
|
|
|
// Fetch the BIOS. [8088 only, for now]
|
|
const auto bios = ROM::Name::PCCompatibleGLaBIOS;
|
|
|
|
ROM::Request request = ROM::Request(bios);
|
|
auto roms = rom_fetcher(request);
|
|
if(!request.validate(roms)) {
|
|
throw ROMMachine::Error::MissingROMs;
|
|
}
|
|
|
|
const auto &bios_contents = roms.find(bios)->second;
|
|
context.memory.install(0x10'0000 - bios_contents.size(), bios_contents.data(), bios_contents.size());
|
|
}
|
|
|
|
// MARK: - TimedMachine.
|
|
void run_for([[maybe_unused]] const Cycles cycles) override {
|
|
auto instructions = cycles.as_integral();
|
|
while(instructions--) {
|
|
// Get the next thing to execute into decoded.
|
|
if(!context.flow_controller.should_repeat()) {
|
|
// Decode from the current IP.
|
|
const auto remainder = context.memory.next_code();
|
|
decoded = decoder.decode(remainder.first, remainder.second);
|
|
|
|
// If that didn't yield a whole instruction then the end of memory must have been hit;
|
|
// continue from the beginning.
|
|
if(decoded.first <= 0) {
|
|
const auto all = context.memory.all();
|
|
decoded = decoder.decode(all.first, all.second);
|
|
}
|
|
|
|
context.registers.ip() += decoded.first;
|
|
} else {
|
|
context.flow_controller.begin_instruction();
|
|
}
|
|
|
|
// Execute it.
|
|
InstructionSet::x86::perform(
|
|
decoded.second,
|
|
context
|
|
);
|
|
}
|
|
}
|
|
|
|
// MARK: - ScanProducer.
|
|
void set_scan_target([[maybe_unused]] Outputs::Display::ScanTarget *scan_target) override {}
|
|
Outputs::Display::ScanStatus get_scaled_scan_status() const override {
|
|
return Outputs::Display::ScanStatus();
|
|
}
|
|
|
|
private:
|
|
struct Context {
|
|
Context() :
|
|
segments(registers),
|
|
memory(registers, segments),
|
|
flow_controller(registers, segments)
|
|
{
|
|
reset();
|
|
}
|
|
|
|
void reset() {
|
|
registers.reset();
|
|
segments.reset();
|
|
}
|
|
|
|
InstructionSet::x86::Flags flags;
|
|
Registers registers;
|
|
Segments segments;
|
|
Memory memory;
|
|
FlowController flow_controller;
|
|
IO io;
|
|
static constexpr auto model = InstructionSet::x86::Model::i8086;
|
|
} context;
|
|
InstructionSet::x86::Decoder<InstructionSet::x86::Model::i8086> decoder;
|
|
std::pair<int, InstructionSet::x86::Instruction<false>> decoded;
|
|
};
|
|
|
|
|
|
}
|
|
|
|
using namespace PCCompatible;
|
|
|
|
// See header; constructs and returns an instance of the Amstrad CPC.
|
|
Machine *Machine::PCCompatible(const Analyser::Static::Target *target, const ROMMachine::ROMFetcher &rom_fetcher) {
|
|
return new PCCompatible::ConcreteMachine(*target, rom_fetcher);
|
|
}
|
|
|
|
Machine::~Machine() {}
|