1
0
mirror of https://github.com/TomHarte/CLK.git synced 2025-01-26 15:32:04 +00:00
CLK/Components/AY38910/AY38910.cpp

283 lines
7.8 KiB
C++

//
// AY-3-8910.cpp
// Clock Signal
//
// Created by Thomas Harte on 14/10/2016.
// Copyright © 2016 Thomas Harte. All rights reserved.
//
#include "AY38910.hpp"
using namespace GI;
AY38910::AY38910() :
selected_register_(0),
tone_counters_{0, 0, 0}, tone_periods_{0, 0, 0}, tone_outputs_{0, 0, 0},
noise_shift_register_(0xffff), noise_period_(0), noise_counter_(0), noise_output_(0),
envelope_divider_(0), envelope_period_(0), envelope_position_(0),
master_divider_(0),
output_registers_{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0} {
output_registers_[8] = output_registers_[9] = output_registers_[10] = 0;
// set up envelope lookup tables
for(int c = 0; c < 16; c++) {
for(int p = 0; p < 32; p++) {
switch(c) {
case 0: case 1: case 2: case 3: case 9:
envelope_shapes_[c][p] = (p < 16) ? (p^0xf) : 0;
envelope_overflow_masks_[c] = 0x1f;
break;
case 4: case 5: case 6: case 7: case 15:
envelope_shapes_[c][p] = (p < 16) ? p : 0;
envelope_overflow_masks_[c] = 0x1f;
break;
case 8:
envelope_shapes_[c][p] = (p & 0xf) ^ 0xf;
envelope_overflow_masks_[c] = 0x00;
break;
case 12:
envelope_shapes_[c][p] = (p & 0xf);
envelope_overflow_masks_[c] = 0x00;
break;
case 10:
envelope_shapes_[c][p] = (p & 0xf) ^ ((p < 16) ? 0xf : 0x0);
envelope_overflow_masks_[c] = 0x00;
break;
case 14:
envelope_shapes_[c][p] = (p & 0xf) ^ ((p < 16) ? 0x0 : 0xf);
envelope_overflow_masks_[c] = 0x00;
break;
case 11:
envelope_shapes_[c][p] = (p < 16) ? (p^0xf) : 0xf;
envelope_overflow_masks_[c] = 0x1f;
break;
case 13:
envelope_shapes_[c][p] = (p < 16) ? p : 0xf;
envelope_overflow_masks_[c] = 0x1f;
break;
}
}
}
// set up volume lookup table
float max_volume = 8192;
float root_two = sqrtf(2.0f);
for(int v = 0; v < 16; v++) {
volumes_[v] = (int)(max_volume / powf(root_two, (float)(v ^ 0xf)));
}
volumes_[0] = 0;
}
void AY38910::set_clock_rate(double clock_rate) {
set_input_rate((float)clock_rate);
}
void AY38910::get_samples(unsigned int number_of_samples, int16_t *target) {
unsigned int c = 0;
while((master_divider_&7) && c < number_of_samples) {
target[c] = output_volume_;
master_divider_++;
c++;
}
while(c < number_of_samples) {
#define step_channel(c) \
if(tone_counters_[c]) tone_counters_[c]--;\
else {\
tone_outputs_[c] ^= 1;\
tone_counters_[c] = tone_periods_[c];\
}
// update the tone channels
step_channel(0);
step_channel(1);
step_channel(2);
#undef step_channel
// ... the noise generator. This recomputes the new bit repeatedly but harmlessly, only shifting
// it into the official 17 upon divider underflow.
if(noise_counter_) noise_counter_--;
else {
noise_counter_ = noise_period_;
noise_output_ ^= noise_shift_register_&1;
noise_shift_register_ |= ((noise_shift_register_ ^ (noise_shift_register_ >> 3))&1) << 17;
noise_shift_register_ >>= 1;
}
// ... and the envelope generator. Table based for pattern lookup, with a 'refill' step — a way of
// implementing non-repeating patterns by locking them to table position 0x1f.
if(envelope_divider_) envelope_divider_--;
else {
envelope_divider_ = envelope_period_;
envelope_position_ ++;
if(envelope_position_ == 32) envelope_position_ = envelope_overflow_masks_[output_registers_[13]];
}
evaluate_output_volume();
for(int ic = 0; ic < 8 && c < number_of_samples; ic++) {
target[c] = output_volume_;
c++;
master_divider_++;
}
}
master_divider_ &= 7;
}
void AY38910::evaluate_output_volume() {
int envelope_volume = envelope_shapes_[output_registers_[13]][envelope_position_];
// The output level for a channel is:
// 1 if neither tone nor noise is enabled;
// 0 if either tone or noise is enabled and its value is low.
// The tone/noise enable bits use inverse logic — 0 = on, 1 = off — permitting the OR logic below.
#define tone_level(c, tone_bit) (tone_outputs_[c] | (output_registers_[7] >> tone_bit))
#define noise_level(c, noise_bit) (noise_output_ | (output_registers_[7] >> noise_bit))
#define level(c, tone_bit, noise_bit) tone_level(c, tone_bit) & noise_level(c, noise_bit) & 1
const int channel_levels[3] = {
level(0, 0, 3),
level(1, 1, 4),
level(2, 2, 5),
};
#undef level
// Channel volume is a simple selection: if the bit at 0x10 is set, use the envelope volume; otherwise use the lower four bits
#define channel_volume(c) \
((output_registers_[c] >> 4)&1) * envelope_volume + (((output_registers_[c] >> 4)&1)^1) * (output_registers_[c]&0xf)
const int volumes[3] = {
channel_volume(8),
channel_volume(9),
channel_volume(10)
};
#undef channel_volume
// Mix additively.
output_volume_ = (int16_t)(
volumes_[volumes[0]] * channel_levels[0] +
volumes_[volumes[1]] * channel_levels[1] +
volumes_[volumes[2]] * channel_levels[2]
);
}
#pragma mark - Register manipulation
void AY38910::select_register(uint8_t r) {
selected_register_ = r;
}
void AY38910::set_register_value(uint8_t value) {
if(selected_register_ > 15) return;
registers_[selected_register_] = value;
if(selected_register_ < 14) {
int selected_register = selected_register_;
enqueue([=] () {
uint8_t masked_value = value;
switch(selected_register) {
case 0: case 2: case 4:
case 1: case 3: case 5: {
int channel = selected_register >> 1;
if(selected_register & 1)
tone_periods_[channel] = (tone_periods_[channel] & 0xff) | (uint16_t)((value&0xf) << 8);
else
tone_periods_[channel] = (tone_periods_[channel] & ~0xff) | value;
// tone_counters_[channel] = tone_periods_[channel];
}
break;
case 6:
noise_period_ = value & 0x1f;
// noise_counter_ = noise_period_;
break;
case 11:
envelope_period_ = (envelope_period_ & ~0xff) | value;
// envelope_divider_ = envelope_period_;
break;
case 12:
envelope_period_ = (envelope_period_ & 0xff) | (int)(value << 8);
// envelope_divider_ = envelope_period_;
break;
case 13:
masked_value &= 0xf;
envelope_position_ = 0;
break;
}
output_registers_[selected_register] = masked_value;
evaluate_output_volume();
});
}
}
uint8_t AY38910::get_register_value() {
// This table ensures that bits that aren't defined within the AY are returned as 1s
// when read. I can't find documentation on this and don't have a machine to test, so
// this is provisionally a guess. TODO: investigate.
const uint8_t register_masks[16] = {
0x00, 0xf0, 0x00, 0xf0, 0x00, 0xf0, 0xe0, 0x00,
0xe0, 0xe0, 0xe0, 0x00, 0x00, 0xf0, 0x00, 0x00
};
if(selected_register_ > 15) return 0xff;
switch(selected_register_) {
default: return registers_[selected_register_] & ~register_masks[selected_register_];
case 14: return (registers_[0x7] & 0x40) ? registers_[14] : port_inputs_[0];
case 15: return (registers_[0x7] & 0x80) ? registers_[15] : port_inputs_[1];
}
}
#pragma mark - Port handling
uint8_t AY38910::get_port_output(bool port_b) {
return registers_[port_b ? 15 : 14];
}
void AY38910::set_port_input(bool port_b, uint8_t value) {
port_inputs_[port_b ? 1 : 0] = value;
update_bus();
}
#pragma mark - Bus handling
void AY38910::set_data_input(uint8_t r) {
data_input_ = r;
update_bus();
}
uint8_t AY38910::get_data_output() {
return data_output_;
}
void AY38910::set_control_lines(ControlLines control_lines) {
switch((int)control_lines) {
default: control_state_ = Inactive; break;
case (int)(BDIR | BC2 | BC1):
case BDIR:
case BC1: control_state_ = LatchAddress; break;
case (int)(BC2 | BC1): control_state_ = Read; break;
case (int)(BDIR | BC2): control_state_ = Write; break;
}
update_bus();
}
void AY38910::update_bus() {
switch(control_state_) {
default: break;
case LatchAddress: select_register(data_input_); break;
case Write: set_register_value(data_input_); break;
case Read: data_output_ = get_register_value(); break;
}
}