1
0
mirror of https://github.com/TomHarte/CLK.git synced 2024-11-10 23:05:01 +00:00
CLK/Components/9918/Implementation/9918Base.hpp
2018-11-23 22:32:32 -05:00

860 lines
28 KiB
C++

//
// 9918Base.hpp
// Clock Signal
//
// Created by Thomas Harte on 14/12/2017.
// Copyright 2017 Thomas Harte. All rights reserved.
//
#ifndef TMS9918Base_hpp
#define TMS9918Base_hpp
#include "../../../Outputs/CRT/CRT.hpp"
#include "../../../ClockReceiver/ClockReceiver.hpp"
#include <cassert>
#include <cstdint>
#include <memory>
#include <vector>
namespace TI {
namespace TMS {
enum Personality {
TMS9918A, // includes the 9928 and 9929; set TV standard and output device as desired.
V9938,
V9958,
SMSVDP,
SMS2VDP,
GGVDP,
};
enum class TVStandard {
/*! i.e. 50Hz output at around 312.5 lines/field */
PAL,
/*! i.e. 60Hz output at around 262.5 lines/field */
NTSC
};
#define is_sega_vdp(x) ((x) >= SMSVDP)
class Base {
public:
static const uint32_t palette_pack(uint8_t r, uint8_t g, uint8_t b) {
uint32_t result = 0;
uint8_t *const result_ptr = reinterpret_cast<uint8_t *>(&result);
result_ptr[0] = r;
result_ptr[1] = g;
result_ptr[2] = b;
result_ptr[3] = 0;
return result;
}
protected:
const static int output_lag = 11; // i.e. pixel output will occur 11 cycles after corresponding data read.
// The default TMS palette.
const uint32_t palette[16] = {
palette_pack(0, 0, 0),
palette_pack(0, 0, 0),
palette_pack(33, 200, 66),
palette_pack(94, 220, 120),
palette_pack(84, 85, 237),
palette_pack(125, 118, 252),
palette_pack(212, 82, 77),
palette_pack(66, 235, 245),
palette_pack(252, 85, 84),
palette_pack(255, 121, 120),
palette_pack(212, 193, 84),
palette_pack(230, 206, 128),
palette_pack(33, 176, 59),
palette_pack(201, 91, 186),
palette_pack(204, 204, 204),
palette_pack(255, 255, 255)
};
Base(Personality p);
const Personality personality_;
Outputs::CRT::CRT crt_;
TVStandard tv_standard_ = TVStandard::NTSC;
// Holds the contents of this VDP's connected DRAM.
std::vector<uint8_t> ram_;
// Holds the state of the DRAM/CRAM-access mechanism.
uint16_t ram_pointer_ = 0;
uint8_t read_ahead_buffer_ = 0;
enum class MemoryAccess {
Read, Write, None
} queued_access_ = MemoryAccess::None;
int cycles_until_access_ = 0;
int minimum_access_column_ = 0;
int vram_access_delay() {
// This seems to be correct for all currently-modelled VDPs;
// it's the delay between an external device scheduling a
// read or write and the very first time that can occur
// (though, in practice, it won't happen until the next
// external slot after this number of cycles after the
// device has requested the read or write).
return 7;
}
// Holds the main status register.
uint8_t status_ = 0;
// Current state of programmer input.
bool write_phase_ = false; // Determines whether the VDP is expecting the low or high byte of a write.
uint8_t low_write_ = 0; // Buffers the low byte of a write.
// Various programmable flags.
bool mode1_enable_ = false;
bool mode2_enable_ = false;
bool mode3_enable_ = false;
bool blank_display_ = false;
bool sprites_16x16_ = false;
bool sprites_magnified_ = false;
bool generate_interrupts_ = false;
int sprite_height_ = 8;
size_t pattern_name_address_ = 0; // i.e. address of the tile map.
size_t colour_table_address_ = 0; // address of the colour map (if applicable).
size_t pattern_generator_table_address_ = 0; // address of the tile contents.
size_t sprite_attribute_table_address_ = 0; // address of the sprite list.
size_t sprite_generator_table_address_ = 0; // address of the sprite contents.
uint8_t text_colour_ = 0;
uint8_t background_colour_ = 0;
// This implementation of this chip officially accepts a 3.58Mhz clock, but runs
// internally at 5.37Mhz. The following two help to maintain a lossless conversion
// from the one to the other.
int cycles_error_ = 0;
HalfCycles half_cycles_before_internal_cycles(int internal_cycles);
// Internal mechanisms for position tracking.
int latched_column_ = 0;
// A helper function to output the current border colour for
// the number of cycles supplied.
void output_border(int cycles, uint32_t cram_dot);
// A struct to contain timing information for the current mode.
struct {
/*
Vertical layout:
Lines 0 to [pixel_lines]: standard data fetch and drawing will occur.
... to [first_vsync_line]: refresh fetches will occur and border will be output.
.. to [2.5 or 3 lines later]: vertical sync is output.
... to [total lines - 1]: refresh fetches will occur and border will be output.
... for one line: standard data fetch will occur, without drawing.
*/
int total_lines = 262;
int pixel_lines = 192;
int first_vsync_line = 227;
// Maximum number of sprite slots to populate;
// if sprites beyond this number should be visible
// then the appropriate status information will be set.
int maximum_visible_sprites = 4;
// Set the position, in cycles, of the two interrupts,
// within a line.
struct {
int column = 4;
int row = 193;
} end_of_frame_interrupt_position;
int line_interrupt_position = -1;
// Enables or disabled the recognition of the sprite
// list terminator, and sets the terminator value.
bool allow_sprite_terminator = true;
uint8_t sprite_terminator = 0xd0;
} mode_timing_;
uint8_t line_interrupt_target = 0xff;
uint8_t line_interrupt_counter = 0;
bool enable_line_interrupts_ = false;
bool line_interrupt_pending_ = false;
// The screen mode is a necessary predecessor to picking the line mode,
// which is the thing latched per line.
enum class ScreenMode {
Blank,
Text,
MultiColour,
ColouredText,
Graphics,
SMSMode4
} screen_mode_;
enum class LineMode {
Text,
Character,
Refresh,
SMS
};
// Temporary buffers collect a representation of this line prior to pixel serialisation.
struct LineBuffer {
// The line mode describes the proper timing diagram for this line.
LineMode line_mode = LineMode::Text;
// Holds the horizontal scroll position to apply to this line;
// of those VDPs currently implemented, affects the Master System only.
uint8_t latched_horizontal_scroll = 0;
// The names array holds pattern names, as an offset into memory, and
// potentially flags also.
struct {
size_t offset = 0;
uint8_t flags = 0;
} names[40];
// The patterns array holds tile patterns, corresponding 1:1 with names.
// Four bytes per pattern is the maximum required by any
// currently-implemented VDP.
uint8_t patterns[40][4];
/*
Horizontal layout (on a 342-cycle clock):
15 cycles right border
58 cycles blanking & sync
13 cycles left border
... i.e. to cycle 86, then:
border up to first_pixel_output_column;
pixels up to next_border_column;
border up to the end.
e.g. standard 256-pixel modes will want to set
first_pixel_output_column = 86, next_border_column = 342.
*/
int first_pixel_output_column = 94;
int next_border_column = 334;
// An active sprite is one that has been selected for composition onto
// this line.
struct ActiveSprite {
int index = 0; // The original in-table index of this sprite.
int row = 0; // The row of the sprite that should be drawn.
int x = 0; // The sprite's x position on screen.
uint8_t image[4]; // Up to four bytes of image information.
int shift_position = 0; // An offset representing how much of the image information has already been drawn.
} active_sprites[8];
int active_sprite_slot = 0; // A pointer to the slot into which a new active sprite will be deposited, if required.
bool sprites_stopped = false; // A special TMS feature is that a sentinel value can be used to prevent any further sprites
// being evaluated for display. This flag determines whether the sentinel has yet been reached.
void reset_sprite_collection();
} line_buffers_[313];
void posit_sprite(LineBuffer &buffer, int sprite_number, int sprite_y, int screen_row);
// There is a delay between reading into the line buffer and outputting from there to the screen. That delay
// is observeable because reading time affects availability of memory accesses and therefore time in which
// to update sprites and tiles, but writing time affects when the palette is used and when the collision flag
// may end up being set. So the two processes are slightly decoupled. The end of reading one line may overlap
// with the beginning of writing the next, hence the two separate line buffers.
struct LineBufferPointer {
int row, column;
} read_pointer_, write_pointer_;
// The SMS VDP has a programmer-set colour palette, with a dedicated patch of RAM. But the RAM is only exactly
// fast enough for the pixel clock. So when the programmer writes to it, that causes a one-pixel glitch; there
// isn't the bandwidth for the read both write to occur simultaneously. The following buffer therefore keeps
// track of pending collisions, for visual reproduction.
struct CRAMDot {
LineBufferPointer location;
uint32_t value;
};
std::vector<CRAMDot> upcoming_cram_dots_;
// Extra information that affects the Master System output mode.
struct {
// Programmer-set flags.
bool vertical_scroll_lock = false;
bool horizontal_scroll_lock = false;
bool hide_left_column = false;
bool shift_sprites_8px_left = false;
bool mode4_enable = false;
uint8_t horizontal_scroll = 0;
uint8_t vertical_scroll = 0;
// The Master System's additional colour RAM.
uint32_t colour_ram[32];
bool cram_is_selected = false;
// Holds the vertical scroll position for this frame; this is latched
// once and cannot dynamically be changed until the next frame.
uint8_t latched_vertical_scroll = 0;
size_t pattern_name_address;
size_t sprite_attribute_table_address;
size_t sprite_generator_table_address;
} master_system_;
void set_current_screen_mode() {
if(blank_display_) {
screen_mode_ = ScreenMode::Blank;
return;
}
if(is_sega_vdp(personality_) && master_system_.mode4_enable) {
screen_mode_ = ScreenMode::SMSMode4;
mode_timing_.maximum_visible_sprites = 8;
return;
}
mode_timing_.maximum_visible_sprites = 4;
if(!mode1_enable_ && !mode2_enable_ && !mode3_enable_) {
screen_mode_ = ScreenMode::ColouredText;
return;
}
if(mode1_enable_ && !mode2_enable_ && !mode3_enable_) {
screen_mode_ = ScreenMode::Text;
return;
}
if(!mode1_enable_ && mode2_enable_ && !mode3_enable_) {
screen_mode_ = ScreenMode::Graphics;
return;
}
if(!mode1_enable_ && !mode2_enable_ && mode3_enable_) {
screen_mode_ = ScreenMode::MultiColour;
return;
}
// TODO: undocumented TMS modes.
screen_mode_ = ScreenMode::Blank;
}
void do_external_slot(int access_column) {
// Don't do anything if the required time for the access to become executable
// has yet to pass.
if(access_column < minimum_access_column_) {
return;
}
switch(queued_access_) {
default: return;
case MemoryAccess::Write:
if(master_system_.cram_is_selected) {
// Adjust the palette.
master_system_.colour_ram[ram_pointer_ & 0x1f] = palette_pack(
static_cast<uint8_t>(((read_ahead_buffer_ >> 0) & 3) * 255 / 3),
static_cast<uint8_t>(((read_ahead_buffer_ >> 2) & 3) * 255 / 3),
static_cast<uint8_t>(((read_ahead_buffer_ >> 4) & 3) * 255 / 3)
);
// Schedule a CRAM dot; this is scheduled for wherever it should appear
// on screen. So it's wherever the output stream would be now. Which
// is output_lag cycles ago from the point of view of the input stream.
upcoming_cram_dots_.emplace_back();
CRAMDot &dot = upcoming_cram_dots_.back();
dot.location.column = write_pointer_.column - output_lag;
dot.location.row = write_pointer_.row;
// Handle before this row conditionally; then handle after (or, more realistically,
// exactly at the end of) naturally.
if(dot.location.column < 0) {
--dot.location.row;
dot.location.column += 342;
}
dot.location.row += dot.location.column / 342;
dot.location.column %= 342;
dot.value = master_system_.colour_ram[ram_pointer_ & 0x1f];
} else {
ram_[ram_pointer_ & 16383] = read_ahead_buffer_;
}
break;
case MemoryAccess::Read:
read_ahead_buffer_ = ram_[ram_pointer_ & 16383];
break;
}
++ram_pointer_;
queued_access_ = MemoryAccess::None;
}
/*
Fetching routines follow below; they obey the following rules:
1) input is a start position and an end position; they should perform the proper
operations for the period: start <= time < end.
2) times are measured relative to a 172-cycles-per-line clock (so: they directly
count access windows on the TMS and Master System).
3) time 0 is the beginning of the access window immediately after the last pattern/data
block fetch that would contribute to this line, in a normal 32-column mode. So:
* it's cycle 309 on Mattias' TMS diagram;
* it's cycle 1238 on his V9938 diagram;
* it's after the last background render block in Mask of Destiny's Master System timing diagram.
That division point was selected, albeit arbitrarily, because it puts all the tile
fetches for a single line into the same [0, 171] period.
4) all of these functions are templated with a `use_end` parameter. That will be true if
end is < 172, false otherwise. So functions can use it to eliminate should-exit-not checks,
for the more usual path of execution.
Provided for the benefit of the methods below:
* the function external_slot(), which will perform any pending VRAM read/write.
* the macros slot(n) and external_slot(n) which can be used to schedule those things inside a
switch(start)-based implementation.
All functions should just spool data to intermediary storage. This is because for most VDPs there is
a decoupling between fetch pattern and output pattern, and it's neater to keep the same division
for the exceptions.
*/
#define slot(n) \
if(use_end && end == n) return;\
case n
#define external_slot(n) \
slot(n): do_external_slot((n)*2);
#define external_slots_2(n) \
external_slot(n); \
external_slot(n+1);
#define external_slots_4(n) \
external_slots_2(n); \
external_slots_2(n+2);
#define external_slots_8(n) \
external_slots_4(n); \
external_slots_4(n+4);
#define external_slots_16(n) \
external_slots_8(n); \
external_slots_8(n+8);
#define external_slots_32(n) \
external_slots_16(n); \
external_slots_16(n+16);
/***********************************************
TMS9918 Fetching Code
************************************************/
template<bool use_end> void fetch_tms_refresh(int start, int end) {
#define refresh(location) \
slot(location): \
external_slot(location+1);
#define refreshes_2(location) \
refresh(location); \
refresh(location+2);
#define refreshes_4(location) \
refreshes_2(location); \
refreshes_2(location+4);
#define refreshes_8(location) \
refreshes_4(location); \
refreshes_4(location+8);
switch(start) {
default: assert(false);
/* 44 external slots */
external_slots_32(0)
external_slots_8(32)
external_slots_4(40)
/* 64 refresh/external slot pairs (= 128 windows) */
refreshes_8(44);
refreshes_8(60);
refreshes_8(76);
refreshes_8(92);
refreshes_8(108);
refreshes_8(124);
refreshes_8(140);
refreshes_8(156);
return;
}
#undef refreshes_8
#undef refreshes_4
#undef refreshes_2
#undef refresh
}
template<bool use_end> void fetch_tms_text(int start, int end) {
#define fetch_tile_name(location, column) slot(location): line_buffer.names[column].offset = ram_[row_base + column];
#define fetch_tile_pattern(location, column) slot(location): line_buffer.patterns[column][0] = ram_[row_offset + size_t(line_buffer.names[column].offset << 3)];
#define fetch_column(location, column) \
fetch_tile_name(location, column); \
external_slot(location+1); \
fetch_tile_pattern(location+2, column);
#define fetch_columns_2(location, column) \
fetch_column(location, column); \
fetch_column(location+3, column+1);
#define fetch_columns_4(location, column) \
fetch_columns_2(location, column); \
fetch_columns_2(location+6, column+2);
#define fetch_columns_8(location, column) \
fetch_columns_4(location, column); \
fetch_columns_4(location+12, column+4);
LineBuffer &line_buffer = line_buffers_[write_pointer_.row];
const size_t row_base = pattern_name_address_ & (0x3c00 | static_cast<size_t>(write_pointer_.row >> 3) * 40);
const size_t row_offset = pattern_generator_table_address_ & (0x3800 | (write_pointer_.row & 7));
switch(start) {
default: assert(false);
/* 47 external slots (= 47 windows) */
external_slots_32(0)
external_slots_8(32)
external_slots_4(40)
external_slots_2(44)
external_slot(46)
/* 40 column fetches (= 120 windows) */
fetch_columns_8(47, 0);
fetch_columns_8(71, 8);
fetch_columns_8(95, 16);
fetch_columns_8(119, 24);
fetch_columns_8(143, 32);
/* 5 more external slots */
external_slots_4(167);
external_slot(171);
return;
}
#undef fetch_columns_8
#undef fetch_columns_4
#undef fetch_columns_2
#undef fetch_column
#undef fetch_tile_pattern
#undef fetch_tile_name
}
template<bool use_end> void fetch_tms_character(int start, int end) {
#define sprite_fetch_coordinates(location, sprite) \
slot(location): \
slot(location+1): \
line_buffer.active_sprites[sprite].x = \
ram_[\
sprite_attribute_table_address_ & size_t(0x3f81 | (line_buffer.active_sprites[sprite].index << 2))\
];
// This implementation doesn't refetch Y; it's unclear to me
// whether it's refetched.
#define sprite_fetch_graphics(location, sprite) \
slot(location): \
slot(location+1): \
slot(location+2): \
slot(location+3): {\
const uint8_t name = ram_[\
sprite_attribute_table_address_ & size_t(0x3f82 | (line_buffer.active_sprites[sprite].index << 2))\
] & (sprites_16x16_ ? ~3 : ~0);\
line_buffer.active_sprites[sprite].image[2] = ram_[\
sprite_attribute_table_address_ & size_t(0x3f83 | (line_buffer.active_sprites[sprite].index << 2))\
];\
line_buffer.active_sprites[sprite].x -= (line_buffer.active_sprites[sprite].image[2] & 0x80) >> 2;\
const size_t graphic_location = sprite_generator_table_address_ & size_t(0x3800 | (name << 3) | line_buffer.active_sprites[sprite].row); \
line_buffer.active_sprites[sprite].image[0] = ram_[graphic_location];\
line_buffer.active_sprites[sprite].image[1] = ram_[graphic_location+16];\
}
#define sprite_fetch_block(location, sprite) \
sprite_fetch_coordinates(location, sprite) \
sprite_fetch_graphics(location+2, sprite)
#define sprite_y_read(location, sprite) \
slot(location): posit_sprite(sprite_selection_buffer, sprite, ram_[sprite_attribute_table_address_ & (((sprite) << 2) | 0x3f80)], write_pointer_.row);
#define fetch_tile_name(column) line_buffer.names[column].offset = ram_[(row_base + column) & 0x3fff];
#define fetch_tile(column) {\
line_buffer.patterns[column][1] = ram_[(colour_base + size_t((line_buffer.names[column].offset << 3) >> colour_name_shift)) & 0x3fff]; \
line_buffer.patterns[column][0] = ram_[(pattern_base + size_t(line_buffer.names[column].offset << 3)) & 0x3fff]; \
}
#define background_fetch_block(location, column, sprite) \
slot(location): fetch_tile_name(column) \
external_slot(location+1); \
slot(location+2): \
slot(location+3): fetch_tile(column) \
slot(location+4): fetch_tile_name(column+1) \
sprite_y_read(location+5, sprite); \
slot(location+6): \
slot(location+7): fetch_tile(column+1) \
slot(location+8): fetch_tile_name(column+2) \
sprite_y_read(location+9, sprite+1); \
slot(location+10): \
slot(location+11): fetch_tile(column+2) \
slot(location+12): fetch_tile_name(column+3) \
sprite_y_read(location+13, sprite+2); \
slot(location+14): \
slot(location+15): fetch_tile(column+3)
LineBuffer &line_buffer = line_buffers_[write_pointer_.row];
LineBuffer &sprite_selection_buffer = line_buffers_[(write_pointer_.row + 1) % mode_timing_.total_lines];
const size_t row_base = pattern_name_address_ & (size_t((write_pointer_.row << 2)&~31) | 0x3c00);
size_t pattern_base = pattern_generator_table_address_;
size_t colour_base = colour_table_address_;
int colour_name_shift = 6;
if(screen_mode_ == ScreenMode::Graphics) {
// If this is high resolution mode, allow the row number to affect the pattern and colour addresses.
pattern_base &= size_t(0x2000 | ((write_pointer_.row & 0xc0) << 5));
colour_base &= size_t(0x2000 | ((write_pointer_.row & 0xc0) << 5));
colour_base += size_t(write_pointer_.row & 7);
colour_name_shift = 0;
} else {
colour_base &= size_t(0xffc0);
pattern_base &= size_t(0x3800);
}
if(screen_mode_ == ScreenMode::MultiColour) {
pattern_base += size_t((write_pointer_.row >> 2) & 7);
} else {
pattern_base += size_t(write_pointer_.row & 7);
}
switch(start) {
default: assert(false);
external_slots_2(0);
sprite_fetch_block(2, 0);
sprite_fetch_block(8, 1);
sprite_fetch_coordinates(14, 2);
external_slots_4(16);
external_slot(20);
sprite_fetch_graphics(21, 2);
sprite_fetch_block(25, 3);
slot(31):
sprite_selection_buffer.reset_sprite_collection();
do_external_slot(31*2);
external_slots_2(32);
external_slot(34);
sprite_y_read(35, 0);
sprite_y_read(36, 1);
sprite_y_read(37, 2);
sprite_y_read(38, 3);
sprite_y_read(39, 4);
sprite_y_read(40, 5);
sprite_y_read(41, 6);
sprite_y_read(42, 7);
background_fetch_block(43, 0, 8);
background_fetch_block(59, 4, 11);
background_fetch_block(75, 8, 14);
background_fetch_block(91, 12, 17);
background_fetch_block(107, 16, 20);
background_fetch_block(123, 20, 23);
background_fetch_block(139, 24, 26);
background_fetch_block(155, 28, 29);
return;
}
#undef background_fetch_block
#undef fetch_tile
#undef fetch_tile_name
#undef sprite_y_read
#undef sprite_fetch_block
#undef sprite_fetch_graphics
#undef sprite_fetch_coordinates
}
/***********************************************
Master System Fetching Code
************************************************/
template<bool use_end> void fetch_sms(int start, int end) {
#define sprite_fetch(sprite) {\
line_buffer.active_sprites[sprite].x = \
ram_[\
master_system_.sprite_attribute_table_address & size_t(0x3f80 | (line_buffer.active_sprites[sprite].index << 1))\
] - (master_system_.shift_sprites_8px_left ? 8 : 0); \
const uint8_t name = ram_[\
master_system_.sprite_attribute_table_address & size_t(0x3f81 | (line_buffer.active_sprites[sprite].index << 1))\
] & (sprites_16x16_ ? ~1 : ~0);\
const size_t graphic_location = master_system_.sprite_generator_table_address & size_t(0x2000 | (name << 5) | (line_buffer.active_sprites[sprite].row << 2)); \
line_buffer.active_sprites[sprite].image[0] = ram_[graphic_location]; \
line_buffer.active_sprites[sprite].image[1] = ram_[graphic_location+1]; \
line_buffer.active_sprites[sprite].image[2] = ram_[graphic_location+2]; \
line_buffer.active_sprites[sprite].image[3] = ram_[graphic_location+3]; \
}
#define sprite_fetch_block(location, sprite) \
slot(location): \
slot(location+1): \
slot(location+2): \
slot(location+3): \
slot(location+4): \
slot(location+5): \
sprite_fetch(sprite);\
sprite_fetch(sprite+1);
#define sprite_y_read(location, sprite) \
slot(location): \
posit_sprite(sprite_selection_buffer, sprite, ram_[master_system_.sprite_attribute_table_address & ((sprite) | 0x3f00)], write_pointer_.row); \
posit_sprite(sprite_selection_buffer, sprite+1, ram_[master_system_.sprite_attribute_table_address & ((sprite + 1) | 0x3f00)], write_pointer_.row); \
#define fetch_tile_name(column, row_info) {\
const size_t scrolled_column = (column - horizontal_offset) & 0x1f;\
const size_t address = row_info.pattern_address_base + (scrolled_column << 1); \
line_buffer.names[column].flags = ram_[address+1]; \
line_buffer.names[column].offset = static_cast<size_t>( \
(((line_buffer.names[column].flags&1) << 8) | ram_[address]) << 5 \
) + row_info.sub_row[(line_buffer.names[column].flags&4) >> 2]; \
}
#define fetch_tile(column) \
line_buffer.patterns[column][0] = ram_[line_buffer.names[column].offset]; \
line_buffer.patterns[column][1] = ram_[line_buffer.names[column].offset+1]; \
line_buffer.patterns[column][2] = ram_[line_buffer.names[column].offset+2]; \
line_buffer.patterns[column][3] = ram_[line_buffer.names[column].offset+3];
#define background_fetch_block(location, column, sprite, row_info) \
slot(location): fetch_tile_name(column, row_info) \
external_slot(location+1); \
slot(location+2): \
slot(location+3): \
slot(location+4): \
fetch_tile(column) \
fetch_tile_name(column+1, row_info) \
sprite_y_read(location+5, sprite); \
slot(location+6): \
slot(location+7): \
slot(location+8): \
fetch_tile(column+1) \
fetch_tile_name(column+2, row_info) \
sprite_y_read(location+9, sprite+2); \
slot(location+10): \
slot(location+11): \
slot(location+12): \
fetch_tile(column+2) \
fetch_tile_name(column+3, row_info) \
sprite_y_read(location+13, sprite+4); \
slot(location+14): \
slot(location+15): fetch_tile(column+3)
// Determine the coarse horizontal scrolling offset; this isn't applied on the first two lines if the programmer has requested it.
LineBuffer &line_buffer = line_buffers_[write_pointer_.row];
LineBuffer &sprite_selection_buffer = line_buffers_[(write_pointer_.row + 1) % mode_timing_.total_lines];
const int horizontal_offset = (write_pointer_.row >= 16 || !master_system_.horizontal_scroll_lock) ? (line_buffer.latched_horizontal_scroll >> 3) : 0;
// Limit address bits in use if this is a SMS2 mode.
const bool is_tall_mode = mode_timing_.pixel_lines != 192;
const size_t pattern_name_address = master_system_.pattern_name_address | (is_tall_mode ? 0x800 : 0);
const size_t pattern_name_offset = is_tall_mode ? 0x100 : 0;
// Determine row info for the screen both (i) if vertical scrolling is applied; and (ii) if it isn't.
// The programmer can opt out of applying vertical scrolling to the right-hand portion of the display.
const int scrolled_row = (write_pointer_.row + master_system_.latched_vertical_scroll) % (is_tall_mode ? 256 : 224);
struct RowInfo {
size_t pattern_address_base;
size_t sub_row[2];
};
const RowInfo scrolled_row_info = {
(pattern_name_address & size_t(((scrolled_row & ~7) << 3) | 0x3800)) - pattern_name_offset,
{static_cast<size_t>((scrolled_row & 7) << 2), 28 ^ static_cast<size_t>((scrolled_row & 7) << 2)}
};
RowInfo row_info;
if(master_system_.vertical_scroll_lock) {
row_info.pattern_address_base = (pattern_name_address & size_t(((write_pointer_.row & ~7) << 3) | 0x3800)) - pattern_name_offset;
row_info.sub_row[0] = size_t((write_pointer_.row & 7) << 2);
row_info.sub_row[1] = 28 ^ size_t((write_pointer_.row & 7) << 2);
} else row_info = scrolled_row_info;
// ... and do the actual fetching, which follows this routine:
switch(start) {
default: assert(false);
sprite_fetch_block(0, 0);
sprite_fetch_block(6, 2);
external_slots_4(12);
external_slot(16);
sprite_fetch_block(17, 4);
sprite_fetch_block(23, 6);
slot(29):
sprite_selection_buffer.reset_sprite_collection();
do_external_slot(29*2);
external_slot(30);
sprite_y_read(31, 0);
sprite_y_read(32, 2);
sprite_y_read(33, 4);
sprite_y_read(34, 6);
sprite_y_read(35, 8);
sprite_y_read(36, 10);
sprite_y_read(37, 12);
sprite_y_read(38, 14);
background_fetch_block(39, 0, 16, scrolled_row_info);
background_fetch_block(55, 4, 22, scrolled_row_info);
background_fetch_block(71, 8, 28, scrolled_row_info);
background_fetch_block(87, 12, 34, scrolled_row_info);
background_fetch_block(103, 16, 40, scrolled_row_info);
background_fetch_block(119, 20, 46, scrolled_row_info);
background_fetch_block(135, 24, 52, row_info);
background_fetch_block(151, 28, 58, row_info);
external_slots_4(167);
return;
}
#undef background_fetch_block
#undef fetch_tile
#undef fetch_tile_name
#undef sprite_y_read
#undef sprite_fetch_block
#undef sprite_fetch
}
#undef external_slot
#undef slot
uint32_t *pixel_target_ = nullptr, *pixel_origin_ = nullptr;
bool asked_for_write_area_ = false;
void draw_tms_character(int start, int end);
void draw_tms_text(int start, int end);
void draw_sms(int start, int end, uint32_t cram_dot);
};
}
}
#endif /* TMS9918Base_hpp */