1
0
mirror of https://github.com/TomHarte/CLK.git synced 2024-12-27 01:31:42 +00:00
CLK/InstructionSets/x86/Implementation/Resolver.hpp
2023-11-16 23:31:51 -05:00

208 lines
10 KiB
C++

//
// Resolver.hpp
// Clock Signal
//
// Created by Thomas Harte on 05/11/2023.
// Copyright © 2023 Thomas Harte. All rights reserved.
//
#ifndef Resolver_h
#define Resolver_h
#include "../AccessType.hpp"
namespace InstructionSet::x86 {
/// Obtain a pointer to the value desribed by @c source, which is one of those named by @c pointer, using @c instruction and @c context
/// for offsets, registers and memory contents.
///
/// If @c source is Source::None then @c none is returned.
///
/// If @c source is Source::Immediate then the appropriate portion of @c instrucion's operand
/// is copied to @c *immediate and @c immediate is returned.
template <typename IntT, AccessType access, typename InstructionT, typename ContextT>
typename Accessor<IntT, access>::type resolve(
InstructionT &instruction,
Source source,
DataPointer pointer,
ContextT &context,
IntT *none = nullptr,
IntT *immediate = nullptr
);
/// Calculates the absolute address for @c pointer given the registers and memory provided in @c context and taking any
/// referenced offset from @c instruction.
template <Source source, typename IntT, AccessType access, typename InstructionT, typename ContextT>
uint32_t address(
InstructionT &instruction,
DataPointer pointer,
ContextT &context
) {
if constexpr (source == Source::DirectAddress) {
return instruction.offset();
}
uint32_t address;
uint16_t zero = 0;
address = resolve<uint16_t, AccessType::Read>(instruction, pointer.index(), pointer, context, &zero);
if constexpr (is_32bit(ContextT::model)) {
address <<= pointer.scale();
}
address += instruction.offset();
if constexpr (source == Source::IndirectNoBase) {
return address;
}
return address + resolve<uint16_t, AccessType::Read>(instruction, pointer.base(), pointer, context);
}
/// @returns a pointer to the contents of the register identified by the combination of @c IntT and @c Source if any;
/// @c nullptr otherwise. @c access is currently unused but is intended to provide the hook upon which updates to
/// segment registers can be tracked for protected modes.
template <typename IntT, AccessType access, Source source, typename ContextT>
IntT *register_(ContextT &context) {
static constexpr bool supports_dword = is_32bit(ContextT::model);
switch(source) {
case Source::eAX:
// Slightly contorted if chain here and below:
//
// (i) does the `constexpr` version of a `switch`; and
// (i) ensures .eax() etc aren't called on @c registers for 16-bit processors, so they need not implement 32-bit storage.
if constexpr (supports_dword && std::is_same_v<IntT, uint32_t>) { return &context.registers.eax(); }
else if constexpr (std::is_same_v<IntT, uint16_t>) { return &context.registers.ax(); }
else if constexpr (std::is_same_v<IntT, uint8_t>) { return &context.registers.al(); }
else { return nullptr; }
case Source::eCX:
if constexpr (supports_dword && std::is_same_v<IntT, uint32_t>) { return &context.registers.ecx(); }
else if constexpr (std::is_same_v<IntT, uint16_t>) { return &context.registers.cx(); }
else if constexpr (std::is_same_v<IntT, uint8_t>) { return &context.registers.cl(); }
else { return nullptr; }
case Source::eDX:
if constexpr (supports_dword && std::is_same_v<IntT, uint32_t>) { return &context.registers.edx(); }
else if constexpr (std::is_same_v<IntT, uint16_t>) { return &context.registers.dx(); }
else if constexpr (std::is_same_v<IntT, uint8_t>) { return &context.registers.dl(); }
else if constexpr (std::is_same_v<IntT, uint32_t>) { return nullptr; }
case Source::eBX:
if constexpr (supports_dword && std::is_same_v<IntT, uint32_t>) { return &context.registers.ebx(); }
else if constexpr (std::is_same_v<IntT, uint16_t>) { return &context.registers.bx(); }
else if constexpr (std::is_same_v<IntT, uint8_t>) { return &context.registers.bl(); }
else if constexpr (std::is_same_v<IntT, uint32_t>) { return nullptr; }
case Source::eSPorAH:
if constexpr (supports_dword && std::is_same_v<IntT, uint32_t>) { return &context.registers.esp(); }
else if constexpr (std::is_same_v<IntT, uint16_t>) { return &context.registers.sp(); }
else if constexpr (std::is_same_v<IntT, uint8_t>) { return &context.registers.ah(); }
else { return nullptr; }
case Source::eBPorCH:
if constexpr (supports_dword && std::is_same_v<IntT, uint32_t>) { return &context.registers.ebp(); }
else if constexpr (std::is_same_v<IntT, uint16_t>) { return &context.registers.bp(); }
else if constexpr (std::is_same_v<IntT, uint8_t>) { return &context.registers.ch(); }
else { return nullptr; }
case Source::eSIorDH:
if constexpr (supports_dword && std::is_same_v<IntT, uint32_t>) { return &context.registers.esi(); }
else if constexpr (std::is_same_v<IntT, uint16_t>) { return &context.registers.si(); }
else if constexpr (std::is_same_v<IntT, uint8_t>) { return &context.registers.dh(); }
else { return nullptr; }
case Source::eDIorBH:
if constexpr (supports_dword && std::is_same_v<IntT, uint32_t>) { return &context.registers.edi(); }
else if constexpr (std::is_same_v<IntT, uint16_t>) { return &context.registers.di(); }
else if constexpr (std::is_same_v<IntT, uint8_t>) { return &context.registers.bh(); }
else { return nullptr; }
// Segment registers are always 16-bit.
case Source::ES: if constexpr (std::is_same_v<IntT, uint16_t>) return &context.registers.es(); else return nullptr;
case Source::CS: if constexpr (std::is_same_v<IntT, uint16_t>) return &context.registers.cs(); else return nullptr;
case Source::SS: if constexpr (std::is_same_v<IntT, uint16_t>) return &context.registers.ss(); else return nullptr;
case Source::DS: if constexpr (std::is_same_v<IntT, uint16_t>) return &context.registers.ds(); else return nullptr;
// 16-bit models don't have FS and GS.
case Source::FS: if constexpr (is_32bit(ContextT::model) && std::is_same_v<IntT, uint16_t>) return &context.registers.fs(); else return nullptr;
case Source::GS: if constexpr (is_32bit(ContextT::model) && std::is_same_v<IntT, uint16_t>) return &context.registers.gs(); else return nullptr;
default: return nullptr;
}
}
///Obtains the address described by @c pointer from @c instruction given the registers and memory as described by @c context.
template <typename IntT, AccessType access, typename InstructionT, typename ContextT>
uint32_t address(
InstructionT &instruction,
DataPointer pointer,
ContextT &context
) {
// TODO: at least on the 8086 this isn't how register 'addresses' are resolved; instead whatever was the last computed address
// remains in the address register and is returned. Find out what other x86s do and make a decision.
switch(pointer.source()) {
default: return 0;
case Source::eAX: return *register_<IntT, access, Source::eAX>(context);
case Source::eCX: return *register_<IntT, access, Source::eCX>(context);
case Source::eDX: return *register_<IntT, access, Source::eDX>(context);
case Source::eBX: return *register_<IntT, access, Source::eBX>(context);
case Source::eSPorAH: return *register_<IntT, access, Source::eSPorAH>(context);
case Source::eBPorCH: return *register_<IntT, access, Source::eBPorCH>(context);
case Source::eSIorDH: return *register_<IntT, access, Source::eSIorDH>(context);
case Source::eDIorBH: return *register_<IntT, access, Source::eDIorBH>(context);
case Source::Indirect: return address<Source::Indirect, IntT, access>(instruction, pointer, context);
case Source::IndirectNoBase: return address<Source::IndirectNoBase, IntT, access>(instruction, pointer, context);
case Source::DirectAddress: return address<Source::DirectAddress, IntT, access>(instruction, pointer, context);
}
}
// See forward declaration, above, for details.
template <typename IntT, AccessType access, typename InstructionT, typename ContextT>
typename Accessor<IntT, access>::type resolve(
InstructionT &instruction,
Source source,
DataPointer pointer,
ContextT &context,
IntT *none,
IntT *immediate
) {
// Rules:
//
// * if this is a memory access, set target_address and break;
// * otherwise return the appropriate value.
uint32_t target_address = 0;
switch(source) {
// Defer all register accesses to the register-specific lookup.
case Source::eAX: return *register_<IntT, access, Source::eAX>(context);
case Source::eCX: return *register_<IntT, access, Source::eCX>(context);
case Source::eDX: return *register_<IntT, access, Source::eDX>(context);
case Source::eBX: return *register_<IntT, access, Source::eBX>(context);
case Source::eSPorAH: return *register_<IntT, access, Source::eSPorAH>(context);
case Source::eBPorCH: return *register_<IntT, access, Source::eBPorCH>(context);
case Source::eSIorDH: return *register_<IntT, access, Source::eSIorDH>(context);
case Source::eDIorBH: return *register_<IntT, access, Source::eDIorBH>(context);
case Source::ES: return *register_<IntT, access, Source::ES>(context);
case Source::CS: return *register_<IntT, access, Source::CS>(context);
case Source::SS: return *register_<IntT, access, Source::SS>(context);
case Source::DS: return *register_<IntT, access, Source::DS>(context);
case Source::FS: return *register_<IntT, access, Source::FS>(context);
case Source::GS: return *register_<IntT, access, Source::GS>(context);
case Source::None: return *none;
case Source::Immediate:
*immediate = IntT(instruction.operand());
return *immediate;
case Source::Indirect:
target_address = address<Source::Indirect, IntT, access>(instruction, pointer, context);
break;
case Source::IndirectNoBase:
target_address = address<Source::IndirectNoBase, IntT, access>(instruction, pointer, context);
break;
case Source::DirectAddress:
target_address = address<Source::DirectAddress, IntT, access>(instruction, pointer, context);
break;
}
// If execution has reached here then a memory fetch is required.
// Do it and exit.
return context.memory.template access<IntT, access>(instruction.data_segment(), target_address);
}
}
#endif /* Resolver_h */