1
0
mirror of https://github.com/TomHarte/CLK.git synced 2024-07-16 22:28:57 +00:00
CLK/Machines/Electron/Electron.cpp

708 lines
19 KiB
C++

//
// Electron.cpp
// Clock Signal
//
// Created by Thomas Harte on 03/01/2016.
// Copyright © 2016 Thomas Harte. All rights reserved.
//
#include "Electron.hpp"
#include <algorithm>
using namespace Electron;
static const unsigned int cycles_per_line = 128;
static const unsigned int cycles_per_frame = 312*cycles_per_line;
static const unsigned int crt_cycles_multiplier = 8;
static const unsigned int crt_cycles_per_line = crt_cycles_multiplier * cycles_per_line;
const int first_graphics_line = 28;
Machine::Machine() :
_interruptControl(0),
_frameCycles(0),
_displayOutputPosition(0),
_audioOutputPosition(0),
_audioOutputPositionError(0),
_currentOutputLine(0),
_crt(Outputs::CRT(crt_cycles_per_line, Outputs::CRT::DisplayType::PAL50, 1, 1))
{
memset(_keyStates, 0, sizeof(_keyStates));
memset(_palette, 0xf, sizeof(_palette));
_interruptStatus = 0x02;
for(int c = 0; c < 16; c++)
memset(_roms[c], 0xff, 16384);
_speaker.set_input_rate(125000);
_tape.set_delegate(this);
}
Machine::~Machine()
{
}
unsigned int Machine::perform_bus_operation(CPU6502::BusOperation operation, uint16_t address, uint8_t *value)
{
unsigned int cycles = 1;
if(address < 0x8000)
{
if(isReadOperation(operation))
{
*value = _ram[address];
}
else
{
// If we're still before the display will start to be painted, or the address is
// less than both the current line address and 0x3000, (the minimum screen mode
// base address) then there's no way this write can affect the current frame. Sp
// no need to flush the display. Otherwise, output up until now so that any
// write doesn't have retroactive effect on the video output.
if(!(
(_frameCycles < first_graphics_line * cycles_per_line) ||
(address < _startLineAddress && address < 0x3000)
))
update_display();
_ram[address] = *value;
}
// for the entire frame, RAM is accessible only on odd cycles; in modes below 4
// it's also accessible only outside of the pixel regions
cycles += (_frameCycles&1)^1;
if(_screenMode < 4)
{
const int current_line = _frameCycles >> 7;
const int line_position = _frameCycles & 127;
if(current_line >= first_graphics_line && current_line < first_graphics_line+256 && line_position >= 24 && line_position < 104)
cycles = (unsigned int)(104 - line_position);
}
}
else
{
if(address >= 0xc000)
{
if((address & 0xff00) == 0xfe00)
{
// printf("%c: %02x: ", isReadOperation(operation) ? 'r' : 'w', *value);
switch(address&0xf)
{
case 0x0:
if(isReadOperation(operation))
{
*value = _interruptStatus;
_interruptStatus &= ~0x02;
}
else
{
_interruptControl = *value;
evaluate_interrupts();
}
break;
case 0x1:
break;
case 0x2:
printf("%02x to [2] mutates %04x ", *value, _startScreenAddress);
_startScreenAddress = (_startScreenAddress & 0xfe00) | (uint16_t)(((*value) & 0xe0) << 1);
printf("into %04x\n", _startScreenAddress);
break;
case 0x3:
printf("%02x to [3] mutates %04x ", *value, _startScreenAddress);
_startScreenAddress = (_startScreenAddress & 0x01ff) | (uint16_t)(((*value) & 0x3f) << 9);
printf("into %04x\n", _startScreenAddress);
break;
case 0x4:
if(isReadOperation(operation))
{
*value = _tape.get_data_register();
_tape.clear_interrupts(Interrupt::TransmitDataEmpty);
}
else
{
_tape.set_data_register(*value);
_tape.clear_interrupts(Interrupt::ReceiveDataFull);
}
break;
case 0x5:
if(!isReadOperation(operation))
{
const uint8_t interruptDisable = (*value)&0xf0;
if( interruptDisable )
{
if( interruptDisable&0x10 ) _interruptStatus &= ~Interrupt::DisplayEnd;
if( interruptDisable&0x20 ) _interruptStatus &= ~Interrupt::RealTimeClock;
if( interruptDisable&0x40 ) _interruptStatus &= ~Interrupt::HighToneDetect;
evaluate_interrupts();
// TODO: NMI (?)
}
// else
{
uint8_t nextROM = (*value)&0xf;
// if(nextROM&0x08)
// {
// _activeRom = (Electron::ROMSlot)(nextROM&0x0e);
// printf("%d -> Paged %d\n", nextROM, _activeRom);
// }
if(((_activeRom&12) != 8) || (nextROM&8))
{
_activeRom = (Electron::ROMSlot)nextROM;
}
// else
// {
// printf("Ignored!");
// }
// printf("%d -> Paged %d\n", nextROM, _activeRom);
}
}
break;
case 0x6:
if(!isReadOperation(operation))
{
update_audio();
_speaker.set_divider(*value);
_tape.set_counter(*value);
}
break;
case 0x7:
if(!isReadOperation(operation))
{
// update screen mode
uint8_t new_screen_mode = ((*value) >> 3)&7;
if(new_screen_mode == 7) new_screen_mode = 4;
if(new_screen_mode != _screenMode)
{
update_display();
_screenMode = new_screen_mode;
switch(_screenMode)
{
case 0: case 1: case 2: _screenModeBaseAddress = 0x3000; break;
case 3: _screenModeBaseAddress = 0x4000; break;
case 4: case 5: _screenModeBaseAddress = 0x5800; break;
case 6: _screenModeBaseAddress = 0x6000; break;
}
}
// update speaker mode
bool new_speaker_is_enabled = (*value & 6) == 2;
if(new_speaker_is_enabled != _speaker.get_is_enabled())
{
update_audio();
_speaker.set_is_enabled(new_speaker_is_enabled);
_tape.set_is_enabled(!new_speaker_is_enabled);
}
_tape.set_is_running(((*value)&0x40) ? true : false);
_tape.set_is_in_input_mode(((*value)&0x04) ? false : true);
// TODO: caps lock LED
}
break;
default:
{
if(!isReadOperation(operation))
{
update_display();
static const int registers[4][4] = {
{10, 8, 2, 0},
{14, 12, 6, 4},
{15, 13, 7, 5},
{11, 9, 3, 1},
};
const int index = (address >> 1)&3;
const uint8_t colour = ~(*value);
if(address&1)
{
_palette[registers[index][0]] = (_palette[registers[index][0]]&3) | ((colour >> 1)&4);
_palette[registers[index][1]] = (_palette[registers[index][1]]&3) | ((colour >> 0)&4);
_palette[registers[index][2]] = (_palette[registers[index][2]]&3) | ((colour << 1)&4);
_palette[registers[index][3]] = (_palette[registers[index][3]]&3) | ((colour << 2)&4);
_palette[registers[index][2]] = (_palette[registers[index][2]]&5) | ((colour >> 4)&2);
_palette[registers[index][3]] = (_palette[registers[index][3]]&5) | ((colour >> 3)&2);
}
else
{
_palette[registers[index][0]] = (_palette[registers[index][0]]&6) | ((colour >> 7)&1);
_palette[registers[index][1]] = (_palette[registers[index][1]]&6) | ((colour >> 6)&1);
_palette[registers[index][2]] = (_palette[registers[index][2]]&6) | ((colour >> 5)&1);
_palette[registers[index][3]] = (_palette[registers[index][3]]&6) | ((colour >> 4)&1);
_palette[registers[index][0]] = (_palette[registers[index][0]]&5) | ((colour >> 2)&2);
_palette[registers[index][1]] = (_palette[registers[index][1]]&5) | ((colour >> 1)&2);
}
}
}
break;
}
}
else
{
if(isReadOperation(operation))
*value = _os[address & 16383];
}
}
else
{
if(isReadOperation(operation))
{
switch(_activeRom)
{
case ROMSlotKeyboard:
case ROMSlotKeyboard+1:
*value = 0xf0;
for(int address_line = 0; address_line < 14; address_line++)
{
if(!(address&(1 << address_line))) *value |= _keyStates[address_line];
}
break;
default:
*value = _roms[_activeRom][address & 16383];
break;
}
}
}
}
// if(operation == CPU6502::BusOperation::ReadOpcode)
// {
// printf("%04x: %02x (%d)\n", address, *value, _frameCycles);
// }
_frameCycles += cycles;
switch(_frameCycles)
{
case 64*128:
case 196*128:
update_audio();
break;
case 128*128:
update_audio();
signal_interrupt(Interrupt::RealTimeClock);
break;
case 284*128:
update_audio();
signal_interrupt(Interrupt::DisplayEnd);
break;
case cycles_per_frame:
update_display();
update_audio();
_frameCycles = 0;
_displayOutputPosition = 0;
_audioOutputPosition = 0;
_currentOutputLine = 0;
break;
}
_tape.run_for_cycles(cycles);
return cycles;
}
void Machine::set_tape(std::shared_ptr<Storage::Tape> tape)
{
_tape.set_tape(tape);
}
void Machine::set_rom(ROMSlot slot, size_t length, const uint8_t *data)
{
uint8_t *target = nullptr;
switch(slot)
{
case ROMSlotOS: target = _os; break;
default: target = _roms[slot]; break;
}
memcpy(target, data, std::min((size_t)16384, length));
}
inline void Machine::signal_interrupt(Electron::Interrupt interrupt)
{
_interruptStatus |= interrupt;
evaluate_interrupts();
}
void Machine::tape_did_change_interrupt_status(Tape *tape)
{
_interruptStatus = (_interruptStatus & ~(Interrupt::TransmitDataEmpty | Interrupt::ReceiveDataFull | Interrupt::HighToneDetect)) | _tape.get_interrupt_status();
evaluate_interrupts();
}
inline void Machine::evaluate_interrupts()
{
if(_interruptStatus & _interruptControl)
{
_interruptStatus |= 1;
}
else
{
_interruptStatus &= ~1;
}
set_irq_line(_interruptStatus & 1);
}
inline void Machine::update_audio()
{
int difference = _frameCycles - _audioOutputPosition;
_audioOutputPosition = _frameCycles;
_speaker.run_for_cycles((_audioOutputPositionError + difference) >> 4);
_audioOutputPositionError = (_audioOutputPositionError + difference)&15;
}
inline void Machine::update_display()
{
const int lines_of_hsync = 3;
const int end_of_hsync = lines_of_hsync * cycles_per_line;
if(_frameCycles >= end_of_hsync)
{
// assert sync for the first three lines of the display, with a break at the end for horizontal alignment
if(_displayOutputPosition < end_of_hsync)
{
for(int c = 0; c < lines_of_hsync; c++)
{
_crt.output_sync(119 * crt_cycles_multiplier);
_crt.output_blank(9 * crt_cycles_multiplier);
}
_displayOutputPosition = end_of_hsync;
}
while(_displayOutputPosition >= end_of_hsync && _displayOutputPosition < _frameCycles)
{
const int current_line = _displayOutputPosition >> 7;
const int line_position = _displayOutputPosition & 127;
// all lines then start with 9 cycles of sync
if(!line_position)
{
_crt.output_sync(9 * crt_cycles_multiplier);
_displayOutputPosition += 9;
}
else
{
bool isBlankLine =
((_screenMode == 3) || (_screenMode == 6)) ?
((current_line < first_graphics_line || current_line >= first_graphics_line+248) || (((current_line - first_graphics_line)%10) > 7)) :
((current_line < first_graphics_line || current_line >= first_graphics_line+256));
if(isBlankLine)
{
if(line_position == 9)
{
_crt.output_blank(119 * crt_cycles_multiplier);
_displayOutputPosition += 119;
}
}
else
{
// there are then 15 cycles of blank, 80 cycles of pixels, and 24 further cycles of blank
if(line_position == 9)
{
_crt.output_blank(15 * crt_cycles_multiplier);
_displayOutputPosition += 15;
switch(_screenMode)
{
case 0: case 3: _currentOutputDivider = 1; break;
case 1: case 4: case 6: _currentOutputDivider = 2; break;
case 2: case 5: _currentOutputDivider = 4; break;
}
_crt.allocate_write_area(80 * crt_cycles_multiplier / _currentOutputDivider);
_currentLine = _writePointer = (uint8_t *)_crt.get_write_target_for_buffer(0);
if(current_line == first_graphics_line)
_startLineAddress = _startScreenAddress;
_currentScreenAddress = _startLineAddress;
}
if(line_position >= 24 && line_position < 104)
{
// determine whether the pixel clock divider has changed; if so write out the old
// data and start a new run
unsigned int newDivider = 0;
switch(_screenMode)
{
case 0: case 3: newDivider = 1; break;
case 1: case 4: case 6: newDivider = 2; break;
case 2: case 5: newDivider = 4; break;
}
if(newDivider != _currentOutputDivider)
{
_crt.output_data((unsigned int)((_writePointer - _currentLine) * _currentOutputDivider * crt_cycles_multiplier), _currentOutputDivider);
_currentOutputDivider = newDivider;
_crt.allocate_write_area((int)((104 - (unsigned int)line_position) * crt_cycles_multiplier / _currentOutputDivider));
_currentLine = _writePointer = (uint8_t *)_crt.get_write_target_for_buffer(0);
}
int pixels_to_output = std::min(_frameCycles - _displayOutputPosition, 104 - line_position);
_displayOutputPosition += pixels_to_output;
if(_screenMode >= 4)
{
// just shifting wouldn't be enough if both
if(_displayOutputPosition&1) pixels_to_output++;
pixels_to_output >>= 1;
}
#define GetNextPixels() \
if(_currentScreenAddress&32768)\
{\
_currentScreenAddress = _screenModeBaseAddress + (_currentScreenAddress&32767);\
}\
uint8_t pixels = _ram[_currentScreenAddress];\
_currentScreenAddress = _currentScreenAddress+8
if(pixels_to_output && _writePointer)
{
switch(_screenMode)
{
default:
case 0: case 3: case 4: case 6:
while(pixels_to_output--)
{
GetNextPixels();
_writePointer[0] = _palette[(pixels&0x80) >> 4];
_writePointer[1] = _palette[(pixels&0x40) >> 3];
_writePointer[2] = _palette[(pixels&0x20) >> 2];
_writePointer[3] = _palette[(pixels&0x10) >> 1];
_writePointer[4] = _palette[(pixels&0x08) >> 0];
_writePointer[5] = _palette[(pixels&0x04) << 1];
_writePointer[6] = _palette[(pixels&0x02) << 2];
_writePointer[7] = _palette[(pixels&0x01) << 3];
_writePointer += 8;
}
break;
case 1:
case 5:
while(pixels_to_output--)
{
GetNextPixels();
_writePointer[0] = _palette[((pixels&0x80) >> 4) | ((pixels&0x08) >> 2)];
_writePointer[1] = _palette[((pixels&0x40) >> 3) | ((pixels&0x04) >> 1)];
_writePointer[2] = _palette[((pixels&0x20) >> 2) | ((pixels&0x02) >> 0)];
_writePointer[3] = _palette[((pixels&0x10) >> 1) | ((pixels&0x01) << 1)];
_writePointer += 4;
}
break;
case 2:
while(pixels_to_output--)
{
GetNextPixels();
_writePointer[0] = _palette[((pixels&0x80) >> 4) | ((pixels&0x20) >> 3) | ((pixels&0x08) >> 2) | ((pixels&0x02) >> 1)];
_writePointer[1] = _palette[((pixels&0x40) >> 3) | ((pixels&0x10) >> 2) | ((pixels&0x04) >> 1) | ((pixels&0x01) >> 0)];
_writePointer += 2;
}
break;
}
}
}
#undef GetNextPixels
if(line_position == 104)
{
_currentOutputLine++;
if(!(_currentOutputLine&7))
{
_startLineAddress += ((_screenMode < 4) ? 80 : 40)*8 - 7;
}
else
_startLineAddress++;
if(_writePointer)
_crt.output_data((unsigned int)((_writePointer - _currentLine) * _currentOutputDivider), _currentOutputDivider);
else
_crt.output_data(80 * crt_cycles_multiplier, _currentOutputDivider);
_crt.output_blank(24 * crt_cycles_multiplier);
_displayOutputPosition += 24;
_currentLine = nullptr;
}
}
}
}
}
}
const char *Machine::get_signal_decoder()
{
return
"vec4 sample(vec2 coordinate)\n"
"{\n"
"float texValue = texture(texID, coordinate).r;\n"
"return vec4( step(4.0/256.0, mod(texValue, 8.0/256.0)), step(2.0/256.0, mod(texValue, 4.0/256.0)), step(1.0/256.0, mod(texValue, 2.0/256.0)), 1.0);\n"
"}";
}
void Machine::set_key_state(Key key, bool isPressed)
{
if(key == KeyBreak)
{
set_reset_line(isPressed);
}
else
{
if(isPressed)
_keyStates[key >> 4] |= key&0xf;
else
_keyStates[key >> 4] &= ~(key&0xf);
}
}
/*
Speaker
*/
void Speaker::get_samples(unsigned int number_of_samples, int16_t *target)
{
if(!_is_enabled)
{
*target = 0;
}
else
{
*target = _output_level;
}
skip_samples(number_of_samples);
}
void Speaker::skip_samples(unsigned int number_of_samples)
{
while(number_of_samples--)
{
_counter ++;
if(_counter > _divider)
{
_counter = 0;
_output_level ^= 8192;
}
}
}
void Speaker::set_divider(uint8_t divider)
{
_divider = divider;
}
void Speaker::set_is_enabled(bool is_enabled)
{
_is_enabled = is_enabled;
_counter = 0;
}
/*
Tape
*/
Tape::Tape() : _is_running(false), _data_register(0), _delegate(nullptr) {}
void Tape::set_tape(std::shared_ptr<Storage::Tape> tape)
{
_tape = tape;
get_next_tape_pulse();
}
inline void Tape::get_next_tape_pulse()
{
_time_into_pulse = 0;
_current_pulse = _tape->get_next_pulse();
if(_pulse_stepper == nullptr || _current_pulse.length.clock_rate != _pulse_stepper->get_output_rate())
{
_pulse_stepper = std::shared_ptr<SignalProcessing::Stepper>(new SignalProcessing::Stepper(_current_pulse.length.clock_rate, 2000000));
}
}
inline void Tape::push_tape_bit(uint16_t bit)
{
_data_register = (uint16_t)((_data_register >> 1) | (bit << 10));
uint8_t old_interrupt_status = _interrupt_status;
if(_bits_since_start)
{
_bits_since_start--;
if(_bits_since_start == 7)
{
_interrupt_status &= ~Interrupt::TransmitDataEmpty;
}
}
else
{
if((_data_register&0x3) == 0x1)
{
_interrupt_status |= Interrupt::TransmitDataEmpty;
_bits_since_start = 9;
}
if(_data_register == 0x3ff)
_interrupt_status |= Interrupt::HighToneDetect;
else
_interrupt_status &= ~Interrupt::HighToneDetect;
}
if(old_interrupt_status != _interrupt_status && _delegate) _delegate->tape_did_change_interrupt_status(this);
}
inline void Tape::clear_interrupts(uint8_t interrupts)
{
if(_interrupt_status & interrupts)
{
_interrupt_status &= ~interrupts;
if(_delegate) _delegate->tape_did_change_interrupt_status(this);
}
}
inline void Tape::run_for_cycles(unsigned int number_of_cycles)
{
if(_is_running && _is_enabled && _tape != nullptr)
{
while(number_of_cycles--)
{
_time_into_pulse += (unsigned int)_pulse_stepper->step();
if(_time_into_pulse == _current_pulse.length.length)
{
get_next_tape_pulse();
_crossings[0] = _crossings[1];
_crossings[1] = _crossings[2];
_crossings[2] = _crossings[3];
_crossings[3] = Tape::Unrecognised;
if(_current_pulse.type != Storage::Tape::Pulse::Zero)
{
float pulse_length = (float)_current_pulse.length.length / (float)_current_pulse.length.clock_rate;
if(pulse_length > 0.4 / 2400.0 && pulse_length < 0.6 / 2400.0) _crossings[3] = Tape::Short;
if(pulse_length > 0.4 / 1200.0 && pulse_length < 0.6 / 1200.0) _crossings[3] = Tape::Long;
}
if(_crossings[0] == Tape::Long && _crossings[1] == Tape::Long)
{
push_tape_bit(0);
_crossings[1] = Tape::Unrecognised;
}
else
{
if(_crossings[0] == Tape::Short && _crossings[1] == Tape::Short && _crossings[2] == Tape::Short && _crossings[3] == Tape::Short)
{
push_tape_bit(1);
_crossings[3] = Tape::Unrecognised;
}
}
}
}
}
}