1
0
mirror of https://github.com/TomHarte/CLK.git synced 2024-11-26 23:52:26 +00:00
CLK/Components/AY38910/AY38910.cpp
2016-10-23 20:42:49 -04:00

280 lines
6.8 KiB
C++

//
// AY-3-8910.cpp
// Clock Signal
//
// Created by Thomas Harte on 14/10/2016.
// Copyright © 2016 Thomas Harte. All rights reserved.
//
#include "AY38910.hpp"
using namespace GI;
AY38910::AY38910() :
_selected_register(0),
_tone_counters{0, 0, 0}, _tone_periods{0, 0, 0}, _tone_outputs{0, 0, 0},
_noise_shift_register(0xffff), _noise_period(0), _noise_counter(0), _noise_output(0),
_envelope_divider(0), _envelope_period(0), _envelope_position(0),
_output_registers{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
{
_output_registers[8] = _output_registers[9] = _output_registers[10] = 0;
// set up envelope lookup tables
for(int c = 0; c < 16; c++)
{
for(int p = 0; p < 32; p++)
{
switch(c)
{
case 0: case 1: case 2: case 3: case 9:
_envelope_shapes[c][p] = (p < 16) ? (p^0xf) : 0;
_envelope_overflow_masks[c] = 0x1f;
break;
case 4: case 5: case 6: case 7: case 15:
_envelope_shapes[c][p] = (p < 16) ? p : 0;
_envelope_overflow_masks[c] = 0x1f;
break;
case 8:
_envelope_shapes[c][p] = (p & 0xf) ^ 0xf;
_envelope_overflow_masks[c] = 0x00;
break;
case 12:
_envelope_shapes[c][p] = (p & 0xf);
_envelope_overflow_masks[c] = 0x00;
break;
case 10:
_envelope_shapes[c][p] = (p & 0xf) ^ ((p < 16) ? 0xf : 0x0);
_envelope_overflow_masks[c] = 0x00;
break;
case 14:
_envelope_shapes[c][p] = (p & 0xf) ^ ((p < 16) ? 0x0 : 0xf);
_envelope_overflow_masks[c] = 0x00;
break;
case 11:
_envelope_shapes[c][p] = (p < 16) ? (p^0xf) : 0xf;
_envelope_overflow_masks[c] = 0x1f;
break;
case 13:
_envelope_shapes[c][p] = (p < 16) ? p : 0xf;
_envelope_overflow_masks[c] = 0x1f;
break;
}
}
}
// set up volume lookup table
float max_volume = 8192;
float root_two = sqrtf(2.0f);
for(int v = 0; v < 16; v++)
{
_volumes[v] = (int)(max_volume / powf(root_two, (float)(v ^ 0xf)));
}
_volumes[0] = 0;
}
void AY38910::set_clock_rate(double clock_rate)
{
set_input_rate((float)clock_rate);
}
void AY38910::get_samples(unsigned int number_of_samples, int16_t *target)
{
int c = 0;
while((_master_divider&15) && c < number_of_samples)
{
target[c] = _output_volume;
_master_divider++;
c++;
}
while(c < number_of_samples)
{
#define step_channel(c) \
if(_tone_counters[c]) _tone_counters[c]--;\
else\
{\
_tone_outputs[c] ^= 1;\
_tone_counters[c] = _tone_periods[c];\
}
// update the tone channels
step_channel(0);
step_channel(1);
step_channel(2);
#undef step_channel
// ... the noise generator. This recomputes the new bit repeatedly but harmlessly, only shifting
// it into the official 17 upon divider underflow.
if(_noise_counter) _noise_counter--;
else
{
_noise_counter = _noise_period;
_noise_output ^= _noise_shift_register&1;
_noise_shift_register |= ((_noise_shift_register ^ (_noise_shift_register >> 3))&1) << 17;
_noise_shift_register >>= 1;
}
// ... and the envelope generator. Table based for pattern lookup, with a 'refill' step — a way of
// implementing non-repeating patterns by locking them to table position 0x1f.
if(_envelope_divider) _envelope_divider--;
else
{
_envelope_divider = _envelope_period;
_envelope_position ++;
if(_envelope_position == 32) _envelope_position = _envelope_overflow_masks[_output_registers[13]];
}
evaluate_output_volume();
for(int ic = 0; ic < 16 && c < number_of_samples; ic++)
{
target[c] = _output_volume;
c++;
_master_divider++;
}
}
}
void AY38910::evaluate_output_volume()
{
int envelope_volume = _envelope_shapes[_output_registers[13]][_envelope_position];
// The output level for a channel is:
// 1 if neither tone nor noise is enabled;
// 0 if either tone or noise is enabled and its value is low.
// (which is implemented here with reverse logic, assuming _channel_output and _noise_output are already inverted)
#define level(c, tb, nb) \
(((((_output_registers[7] >> tb)&1)^1) & _tone_outputs[c]) | ((((_output_registers[7] >> nb)&1)^1) & _noise_output)) ^ 1
int channel_levels[3] = {
level(0, 0, 3),
level(1, 1, 4),
level(2, 2, 5),
};
#undef level
// Channel volume is a simple selection: if the bit at 0x10 is set, use the envelope volume; otherwise use the lower four bits
#define channel_volume(c) \
((_output_registers[c] >> 4)&1) * envelope_volume + (((_output_registers[c] >> 4)&1)^1) * (_output_registers[c]&0xf)
int volumes[3] = {
channel_volume(8),
channel_volume(9),
channel_volume(10)
};
#undef channel_volume
// Mix additively.
_output_volume = (int16_t)(
_volumes[volumes[0]] * channel_levels[0] +
_volumes[volumes[1]] * channel_levels[1] +
_volumes[volumes[2]] * channel_levels[2]
);
}
void AY38910::select_register(uint8_t r)
{
_selected_register = r & 0xf;
}
void AY38910::set_register_value(uint8_t value)
{
_registers[_selected_register] = value;
if(_selected_register < 14)
{
int selected_register = _selected_register;
enqueue([=] () {
uint8_t masked_value = value;
switch(selected_register)
{
case 0: case 2: case 4:
case 1: case 3: case 5:
{
int channel = selected_register >> 1;
if(selected_register & 1)
_tone_periods[channel] = (_tone_periods[channel] & 0xff) | (uint16_t)((value&0xf) << 8);
else
_tone_periods[channel] = (_tone_periods[channel] & ~0xff) | value;
_tone_counters[channel] = _tone_periods[channel];
}
break;
case 6:
_noise_period = value & 0x1f;
_noise_counter = _noise_period;
break;
case 11:
_envelope_period = (_envelope_period & ~0xff) | value;
_envelope_divider = _envelope_period;
break;
case 12:
_envelope_period = (_envelope_period & 0xff) | (int)(value << 8);
_envelope_divider = _envelope_period;
break;
case 13:
masked_value &= 0xf;
_envelope_position = 0;
break;
}
_output_registers[selected_register] = masked_value;
evaluate_output_volume();
});
}
}
uint8_t AY38910::get_register_value()
{
return _registers[_selected_register];
}
uint8_t AY38910::get_port_output(bool port_b)
{
return _registers[port_b ? 15 : 14];
}
void AY38910::set_data_input(uint8_t r)
{
_data_input = r;
}
uint8_t AY38910::get_data_output()
{
return _data_output;
}
void AY38910::set_control_lines(ControlLines control_lines)
{
ControlState new_state;
switch((int)control_lines)
{
default: new_state = Inactive; break;
case (int)(BCDIR | BC2 | BC1):
case BCDIR:
case BC1: new_state = LatchAddress; break;
case (int)(BC2 | BC1): new_state = Read; break;
case (int)(BCDIR | BC2): new_state = Write; break;
}
if(new_state != _control_state)
{
_control_state = new_state;
switch(new_state)
{
default: break;
case LatchAddress: select_register(_data_input); break;
case Write: set_register_value(_data_input); break;
case Read: _data_output = get_register_value(); break;
}
}
}