1
0
mirror of https://github.com/TomHarte/CLK.git synced 2024-11-26 23:52:26 +00:00
CLK/InstructionSets/M68k/Implementation/PerformImplementation.hpp
2024-01-16 23:34:46 -05:00

1006 lines
35 KiB
C++

//
// PerformImplementation.hpp
// Clock Signal
//
// Created by Thomas Harte on 28/04/2022.
// Copyright © 2022 Thomas Harte. All rights reserved.
//
#pragma once
#include "../../../Numeric/Carry.hpp"
#include "../ExceptionVectors.hpp"
#include <algorithm>
#include <cassert>
#include <cmath>
namespace InstructionSet::M68k {
/// Sign-extend @c x to 32 bits and return as an unsigned 32-bit int.
inline uint32_t u_extend16(uint16_t x) { return uint32_t(int16_t(x)); }
/// Sign-extend @c x to 32 bits and return as a signed 32-bit int.
inline int32_t s_extend16(uint16_t x) { return int32_t(int16_t(x)); }
namespace Primitive {
/// Performs an add or subtract (as per @c is_add) between @c source and @c destination,
/// updating @c status. @c is_extend indicates whether this is an extend operation (e.g. ADDX)
/// or a plain one (e.g. ADD).
template <bool is_add, bool is_extend, typename IntT>
static void add_sub(IntT source, IntT &destination, Status &status) {
static_assert(!std::numeric_limits<IntT>::is_signed);
IntT result = is_add ?
destination + source :
destination - source;
status.carry_flag = is_add ? result < destination : result > destination;
// If this is an extend operation, there's a second opportunity to create carry,
// which requires a second test.
if(is_extend && status.extend_flag) {
if constexpr (is_add) {
++result;
status.carry_flag |= result == 0;
} else {
status.carry_flag |= result == 0;
--result;
}
}
status.extend_flag = status.carry_flag;
// Extend operations can reset the zero flag only; non-extend operations
// can either set it or reset it. Which in the reverse-logic world of
// zero_result means ORing or storing.
if constexpr (is_extend) {
status.zero_result |= Status::FlagT(result);
} else {
status.zero_result = Status::FlagT(result);
}
status.set_negative(result);
status.overflow_flag = Numeric::overflow<is_add>(destination, source, result);
destination = result;
}
/// Perform an SBCD of @c lhs - @c rhs, storing the result to @c destination and updating @c status.
///
/// @discussion The slightly awkward abandonment of source, destination permits the use of this for both
/// SBCD and NBCD.
inline void sbcd(uint8_t rhs, uint8_t lhs, uint8_t &destination, Status &status) {
const int extend = (status.extend_flag ? 1 : 0);
const int unadjusted_result = lhs - rhs - extend;
const int top = (lhs & 0xf0) - (rhs & 0xf0) - (0x60 & (unadjusted_result >> 4));
int result = (lhs & 0xf) - (rhs & 0xf) - extend;
const int low_adjustment = 0x06 & (result >> 4);
status.extend_flag = status.carry_flag = Status::FlagT(
(unadjusted_result - low_adjustment) & 0x300
);
result = result + top - low_adjustment;
/* Store the result. */
destination = uint8_t(result);
/* Set all remaining flags essentially as if this were normal subtraction. */
status.zero_result |= destination;
status.set_negative(destination);
status.overflow_flag = unadjusted_result & ~result & 0x80;
}
/// Perform the bitwise operation defined by @c operation on @c source and @c destination and update @c status.
/// Bitwise operations are any of the byte, word or long versions of AND, OR and EOR.
template <Operation operation, typename IntT>
void bitwise(IntT source, IntT &destination, Status &status) {
static_assert(
operation == Operation::ANDb || operation == Operation::ANDw || operation == Operation::ANDl ||
operation == Operation::ORb || operation == Operation::ORw || operation == Operation::ORl ||
operation == Operation::EORb || operation == Operation::EORw || operation == Operation::EORl
);
switch(operation) {
case Operation::ANDb: case Operation::ANDw: case Operation::ANDl:
destination &= source;
break;
case Operation::ORb: case Operation::ORw: case Operation::ORl:
destination |= source;
break;
case Operation::EORb: case Operation::EORw: case Operation::EORl:
destination ^= source;
break;
}
status.overflow_flag = status.carry_flag = 0;
status.set_neg_zero(destination);
}
/// Compare of @c source to @c destination, setting zero, carry, negative and overflow flags.
template <typename IntT>
void compare(IntT source, IntT destination, Status &status) {
const IntT result = destination - source;
status.carry_flag = result > destination;
status.set_neg_zero(result);
status.overflow_flag = Numeric::overflow<false>(destination, source, result);
}
/// @returns the name of the bit to be used as a mask for BCLR, BCHG, BSET or BTST for
/// @c instruction given @c source.
inline uint32_t mask_bit(const Preinstruction &instruction, uint32_t source) {
return source & (instruction.mode<1>() == AddressingMode::DataRegisterDirect ? 31 : 7);
}
/// Perform a BCLR, BCHG or BSET as specified by @c operation and described by @c instruction, @c source and @c destination, updating @c destination and @c status.
/// Also makes an appropriate notification to the @c flow_controller.
template <Operation operation, typename FlowController>
void bit_manipulate(const Preinstruction &instruction, uint32_t source, uint32_t &destination, Status &status, FlowController &flow_controller) {
static_assert(
operation == Operation::BCLR ||
operation == Operation::BCHG ||
operation == Operation::BSET);
const auto bit = mask_bit(instruction, source);
status.zero_result = destination & (1 << bit);
switch(operation) {
case Operation::BCLR: destination &= ~(1 << bit); break;
case Operation::BCHG: destination ^= (1 << bit); break;
case Operation::BSET: destination |= (1 << bit); break;
}
flow_controller.did_bit_op(int(bit));
}
/// Sets @c destination to 0, clears the overflow, carry and negative flags, sets the zero flag.
template <typename IntT> void clear(IntT &destination, Status &status) {
destination = 0;
status.negative_flag = status.overflow_flag = status.carry_flag = status.zero_result = 0;
}
/// Perform an ANDI, EORI or ORI to either SR or CCR, notifying @c flow_controller if appropriate.
template <Operation operation, typename FlowController>
void apply_sr_ccr(uint16_t source, Status &status, FlowController &flow_controller) {
static_assert(
operation == Operation::ANDItoSR || operation == Operation::ANDItoCCR ||
operation == Operation::EORItoSR || operation == Operation::EORItoCCR ||
operation == Operation::ORItoSR || operation == Operation::ORItoCCR
);
auto sr = status.status();
switch(operation) {
case Operation::ANDItoSR: case Operation::ANDItoCCR:
sr &= source;
break;
case Operation::EORItoSR: case Operation::EORItoCCR:
sr ^= source;
break;
case Operation::ORItoSR: case Operation::ORItoCCR:
sr |= source;
break;
}
switch(operation) {
case Operation::ANDItoSR:
case Operation::EORItoSR:
case Operation::ORItoSR:
status.set_status(sr);
flow_controller.did_update_status();
break;
case Operation::ANDItoCCR:
case Operation::EORItoCCR:
case Operation::ORItoCCR:
status.set_ccr(sr);
break;
}
}
/// Perform a MULU or MULS between @c source and @c destination, updating @c status and notifying @c flow_controller.
template <bool is_mulu, typename FlowController>
void multiply(uint16_t source, uint32_t &destination, Status &status, FlowController &flow_controller) {
if constexpr (is_mulu) {
destination = source * uint16_t(destination);
} else {
destination = u_extend16(source) * u_extend16(uint16_t(destination));
}
status.carry_flag = status.overflow_flag = 0;
status.set_neg_zero(destination);
if constexpr (is_mulu) {
flow_controller.did_mulu(source);
} else {
flow_controller.did_muls(source);
}
}
/// Announce a DIVU or DIVS to @c flow_controller.
template <bool is_divu, bool did_overflow, typename IntT, typename FlowController>
void did_divide(IntT dividend, IntT divisor, FlowController &flow_controller) {
if constexpr (is_divu) {
flow_controller.template did_divu<did_overflow>(dividend, divisor);
} else {
flow_controller.template did_divs<did_overflow>(dividend, divisor);
}
}
/// Perform a DIVU or DIVS between @c source and @c destination, updating @c status and notifying @c flow_controller.
template <bool is_divu, typename Int16, typename Int32, typename FlowController>
void divide(uint16_t source, uint32_t &destination, Status &status, FlowController &flow_controller) {
status.carry_flag = 0;
const auto dividend = Int32(destination);
const auto divisor = Int32(Int16(source));
if(!divisor) {
status.negative_flag = status.overflow_flag = 0;
status.zero_result = 1;
flow_controller.raise_exception(Exception::IntegerDivideByZero);
did_divide<is_divu, false>(dividend, divisor, flow_controller);
return;
}
const auto quotient = int64_t(dividend) / int64_t(divisor);
if(quotient != Int32(Int16(quotient))) {
status.overflow_flag = 1;
did_divide<is_divu, true>(dividend, divisor, flow_controller);
return;
}
const auto remainder = Int16(dividend % divisor);
destination = uint32_t((uint32_t(remainder) << 16) | uint16_t(quotient));
status.overflow_flag = 0;
status.zero_result = Status::FlagT(quotient);
status.set_negative(uint16_t(quotient));
did_divide<is_divu, false>(dividend, divisor, flow_controller);
}
/// Move @c source to @c destination, updating @c status.
template <typename IntT> void move(IntT source, IntT &destination, Status &status) {
destination = source;
status.set_neg_zero(destination);
status.overflow_flag = status.carry_flag = 0;
}
/// Perform NEG.[b/l/w] on @c source, updating @c status.
template <bool is_extend, typename IntT> void negative(IntT &source, Status &status) {
const IntT result = -source - (is_extend && status.extend_flag ? 1 : 0);
if constexpr (is_extend) {
status.zero_result |= result;
} else {
status.zero_result = result;
}
status.extend_flag = status.carry_flag = result; // i.e. any value other than 0 will result in carry.
status.set_negative(result);
status.overflow_flag = Numeric::overflow<false>(IntT(0), source, result);
source = result;
}
/// Perform TST.[b/l/w] with @c source, updating @c status.
template <typename IntT> void test(IntT source, Status &status) {
status.carry_flag = status.overflow_flag = 0;
status.set_neg_zero(source);
}
/// Decodes the proper shift distance from @c source, notifying the @c flow_controller.
template <typename IntT, typename FlowController> int shift_count(uint8_t source, FlowController &flow_controller) {
const int count = source & 63;
flow_controller.template did_shift<IntT>(count);
return count;
}
/// Perform an arithmetic or logical shift, i.e. any of LSL, LSR, ASL or ASR.
template <Operation operation, typename IntT, typename FlowController> void shift(uint32_t source, IntT &destination, Status &status, FlowController &flow_controller) {
static_assert(
operation == Operation::ASLb || operation == Operation::ASLw || operation == Operation::ASLl ||
operation == Operation::ASRb || operation == Operation::ASRw || operation == Operation::ASRl ||
operation == Operation::LSLb || operation == Operation::LSLw || operation == Operation::LSLl ||
operation == Operation::LSRb || operation == Operation::LSRw || operation == Operation::LSRl
);
constexpr auto size = Numeric::bit_size<IntT>();
const auto shift = shift_count<IntT>(uint8_t(source), flow_controller);
if(!shift) {
status.carry_flag = status.overflow_flag = 0;
} else {
enum class Type {
ASL, LSL, ASR, LSR
} type;
switch(operation) {
case Operation::ASLb: case Operation::ASLw: case Operation::ASLl:
type = Type::ASL;
break;
case Operation::LSLb: case Operation::LSLw: case Operation::LSLl:
type = Type::LSL;
break;
case Operation::ASRb: case Operation::ASRw: case Operation::ASRl:
type = Type::ASR;
break;
case Operation::LSRb: case Operation::LSRw: case Operation::LSRl:
type = Type::LSR;
break;
}
switch(type) {
case Type::ASL:
case Type::LSL:
if(shift > size) {
status.carry_flag = status.extend_flag = 0;
} else {
status.carry_flag = status.extend_flag = (destination << (shift - 1)) & Numeric::top_bit<IntT>();
}
if(type == Type::LSL) {
status.overflow_flag = 0;
} else {
// Overflow records whether the top bit changed at any point during the operation.
if(shift >= size) {
// The result is going to be all bits evacuated through the top giving a net
// result of 0, so overflow is set if any bit was originally set.
status.overflow_flag = destination;
} else {
// For a shift of n places, overflow will be set if the top n+1 bits were not
// all the same value.
const auto affected_bits = IntT(
~((Numeric::top_bit<IntT>() >> shift) - 1)
); // e.g. shift = 1 => ~((0x80 >> 1) - 1) = ~(0x40 - 1) = ~0x3f = 0xc0, i.e. if shift is
// 1 then the top two bits are relevant to whether there was overflow. If they have the
// same value, i.e. are both 0 or are both 1, then there wasn't. Otherwise there was.
status.overflow_flag = (destination & affected_bits) && (destination & affected_bits) != affected_bits;
}
}
if(shift >= size) {
destination = 0;
} else {
destination <<= shift;
}
break;
case Type::ASR:
case Type::LSR: {
if(shift > size) {
status.carry_flag = status.extend_flag = 0;
} else {
status.carry_flag = status.extend_flag = (destination >> (shift - 1)) & 1;
}
status.overflow_flag = 0; // The top bit can't change during an ASR, and LSR always clears overflow.
const IntT sign_word =
type == Type::LSR ?
0 : (destination & Numeric::top_bit<IntT>() ? IntT(~0) : 0);
if(shift >= size) {
destination = sign_word;
} else {
destination = IntT((destination >> shift) | (sign_word << (size - shift)));
}
} break;
}
}
status.set_neg_zero(destination);
}
/// Perform a rotate without extend, i.e. any of RO[L/R].[b/w/l].
template <Operation operation, typename IntT, typename FlowController> void rotate(uint32_t source, IntT &destination, Status &status, FlowController &flow_controller) {
static_assert(
operation == Operation::ROLb || operation == Operation::ROLw || operation == Operation::ROLl ||
operation == Operation::RORb || operation == Operation::RORw || operation == Operation::RORl
);
constexpr auto size = Numeric::bit_size<IntT>();
auto shift = shift_count<IntT>(uint8_t(source), flow_controller);
if(!shift) {
status.carry_flag = 0;
} else {
shift &= size - 1;
switch(operation) {
case Operation::ROLb: case Operation::ROLw: case Operation::ROLl:
if(shift) {
destination = IntT(
(destination << shift) |
(destination >> (size - shift))
);
}
status.carry_flag = Status::FlagT(destination & 1);
break;
case Operation::RORb: case Operation::RORw: case Operation::RORl:
if(shift) {
destination = IntT(
(destination >> shift) |
(destination << (size - shift))
);
}
status.carry_flag = Status::FlagT(destination & Numeric::top_bit<IntT>());
break;
}
}
status.set_neg_zero(destination);
status.overflow_flag = 0;
}
/// Perform a rotate-through-extend, i.e. any of ROX[L/R].[b/w/l].
template <Operation operation, typename IntT, typename FlowController> void rox(uint32_t source, IntT &destination, Status &status, FlowController &flow_controller) {
static_assert(
operation == Operation::ROXLb || operation == Operation::ROXLw || operation == Operation::ROXLl ||
operation == Operation::ROXRb || operation == Operation::ROXRw || operation == Operation::ROXRl
);
constexpr auto size = Numeric::bit_size<IntT>();
auto shift = shift_count<IntT>(uint8_t(source), flow_controller) % (size + 1);
if(!shift) {
// When shift is zero, extend is unaffected but is copied to carry.
status.carry_flag = status.extend_flag;
} else {
switch(operation) {
case Operation::ROXLb: case Operation::ROXLw: case Operation::ROXLl:
status.carry_flag = Status::FlagT((destination >> (size - shift)) & 1);
if(shift == Numeric::bit_size<IntT>()) {
destination = IntT(
(status.extend_flag ? Numeric::top_bit<IntT>() : 0) |
(destination >> 1)
);
} else if(shift == 1) {
destination = IntT(
(destination << 1) |
IntT(status.extend_flag ? 1 : 0)
);
} else {
destination = IntT(
(destination << shift) |
(IntT(status.extend_flag ? 1 : 0) << (shift - 1)) |
(destination >> (size + 1 - shift))
);
}
status.extend_flag = status.carry_flag;
break;
case Operation::ROXRb: case Operation::ROXRw: case Operation::ROXRl:
status.carry_flag = Status::FlagT(destination & (1 << (shift - 1)));
if(shift == Numeric::bit_size<IntT>()) {
destination = IntT(
(status.extend_flag ? 1 : 0) |
(destination << 1)
);
} else if(shift == 1) {
destination = IntT(
(destination >> 1) |
(status.extend_flag ? Numeric::top_bit<IntT>() : 0)
);
} else {
destination = IntT(
(destination >> shift) |
((status.extend_flag ? Numeric::top_bit<IntT>() : 0) >> (shift - 1)) |
(destination << (size + 1 - shift))
);
}
status.extend_flag = status.carry_flag;
break;
}
}
status.set_neg_zero(destination);
status.overflow_flag = 0;
}
}
template <
Model model,
typename FlowController,
Operation operation = Operation::Undefined
> void perform(Preinstruction instruction, CPU::SlicedInt32 &src, CPU::SlicedInt32 &dest, Status &status, FlowController &flow_controller) {
switch((operation != Operation::Undefined) ? operation : instruction.operation) {
/*
ABCD adds the lowest bytes from the source and destination using BCD arithmetic,
obeying the extend flag.
*/
case Operation::ABCD: {
// Pull out the two halves, for simplicity.
const uint8_t source = src.b;
const uint8_t destination = dest.b;
const int extend = (status.extend_flag ? 1 : 0);
// Perform the BCD add by evaluating the two nibbles separately.
const int unadjusted_result = destination + source + extend;
int result = (destination & 0xf) + (source & 0xf) + extend;
result +=
(destination & 0xf0) +
(source & 0xf0) +
(((9 - result) >> 4) & 0x06); // i.e. ((result > 0x09) ? 0x06 : 0x00)
result += ((0x9f - result) >> 4) & 0x60; // i.e. ((result > 0x9f) ? 0x60 : 0x00)
// Set all flags essentially as if this were normal addition.
status.zero_result |= result & 0xff;
status.extend_flag = status.carry_flag = uint_fast32_t(result & ~0xff);
status.set_negative(uint8_t(result));
status.overflow_flag = ~unadjusted_result & result & 0x80;
// Store the result.
dest.b = uint8_t(result);
} break;
// ADD and ADDA add two quantities, the latter sign extending and without setting any flags;
// ADDQ and SUBQ act as ADD and SUB, but taking the second argument from the instruction code.
case Operation::ADDb: Primitive::add_sub<true, false>(src.b, dest.b, status); break;
case Operation::SUBb: Primitive::add_sub<false, false>(src.b, dest.b, status); break;
case Operation::ADDXb: Primitive::add_sub<true, true>(src.b, dest.b, status); break;
case Operation::SUBXb: Primitive::add_sub<false, true>(src.b, dest.b, status); break;
case Operation::ADDw: Primitive::add_sub<true, false>(src.w, dest.w, status); break;
case Operation::SUBw: Primitive::add_sub<false, false>(src.w, dest.w, status); break;
case Operation::ADDXw: Primitive::add_sub<true, true>(src.w, dest.w, status); break;
case Operation::SUBXw: Primitive::add_sub<false, true>(src.w, dest.w, status); break;
case Operation::ADDl: Primitive::add_sub<true, false>(src.l, dest.l, status); break;
case Operation::SUBl: Primitive::add_sub<false, false>(src.l, dest.l, status); break;
case Operation::ADDXl: Primitive::add_sub<true, true>(src.l, dest.l, status); break;
case Operation::SUBXl: Primitive::add_sub<false, true>(src.l, dest.l, status); break;
case Operation::ADDAw: dest.l += u_extend16(src.w); break;
case Operation::ADDAl: dest.l += src.l; break;
case Operation::SUBAw: dest.l -= u_extend16(src.w); break;
case Operation::SUBAl: dest.l -= src.l; break;
// BTST/BCLR/etc: modulo for the mask depends on whether memory or a data register is the target.
case Operation::BTST:
status.zero_result = dest.l & (1 << Primitive::mask_bit(instruction, src.l));
break;
case Operation::BCLR: Primitive::bit_manipulate<Operation::BCLR>(instruction, src.l, dest.l, status, flow_controller); break;
case Operation::BCHG: Primitive::bit_manipulate<Operation::BCHG>(instruction, src.l, dest.l, status, flow_controller); break;
case Operation::BSET: Primitive::bit_manipulate<Operation::BSET>(instruction, src.l, dest.l, status, flow_controller); break;
case Operation::Bccb:
flow_controller.template complete_bcc<int8_t>(
status.evaluate_condition(instruction.condition()),
int8_t(src.b));
break;
case Operation::Bccw:
flow_controller.template complete_bcc<int16_t>(
status.evaluate_condition(instruction.condition()),
int16_t(src.w));
break;
case Operation::Bccl:
flow_controller.template complete_bcc<int32_t>(
status.evaluate_condition(instruction.condition()),
int32_t(src.l));
break;
case Operation::BSRb:
flow_controller.bsr(uint32_t(int8_t(src.b)));
break;
case Operation::BSRw:
flow_controller.bsr(uint32_t(int16_t(src.w)));
break;
case Operation::BSRl:
flow_controller.bsr(src.l);
break;
case Operation::DBcc: {
const bool matched_condition = status.evaluate_condition(instruction.condition());
bool overflowed = false;
// Classify the dbcc.
if(!matched_condition) {
-- src.w;
overflowed = src.w == 0xffff;
}
// Take the branch.
flow_controller.complete_dbcc(
matched_condition,
overflowed,
int16_t(dest.w));
} break;
case Operation::Scc: {
const bool condition = status.evaluate_condition(instruction.condition());
src.b = condition ? 0xff : 0x00;
flow_controller.did_scc(condition);
} break;
/*
CLRs: store 0 to the destination, set the zero flag, and clear
negative, overflow and carry.
*/
case Operation::CLRb: Primitive::clear(src.b, status); break;
case Operation::CLRw: Primitive::clear(src.w, status); break;
case Operation::CLRl: Primitive::clear(src.l, status); break;
/*
CMP.b, CMP.l and CMP.w: sets the condition flags (other than extend) based on a subtraction
of the source from the destination; the result of the subtraction is not stored.
*/
case Operation::CMPb: Primitive::compare(src.b, dest.b, status); break;
case Operation::CMPw: Primitive::compare(src.w, dest.w, status); break;
case Operation::CMPAw: Primitive::compare(u_extend16(src.w), dest.l, status); break;
case Operation::CMPAl:
case Operation::CMPl: Primitive::compare(src.l, dest.l, status); break;
// JMP: copies EA(0) to the program counter.
case Operation::JMP:
flow_controller.jmp(src.l);
break;
// JSR: jump to EA(0), pushing the current PC to the stack.
case Operation::JSR:
flow_controller.jsr(src.l);
break;
/*
MOVE.b, MOVE.l and MOVE.w: move the least significant byte or word, or the entire long word,
and set negative, zero, overflow and carry as appropriate.
*/
case Operation::MOVEb: Primitive::move(src.b, dest.b, status); break;
case Operation::MOVEw: Primitive::move(src.w, dest.w, status); break;
case Operation::MOVEl: Primitive::move(src.l, dest.l, status); break;
/*
MOVEA.l: move the entire long word;
MOVEA.w: move the least significant word and sign extend it.
Neither sets any flags.
*/
case Operation::MOVEAw:
dest.l = u_extend16(src.w);
break;
case Operation::MOVEAl:
dest.l = src.l;
break;
case Operation::LEA:
dest.l = src.l;
break;
case Operation::PEA:
flow_controller.pea(src.l);
break;
/*
Status word moves and manipulations.
*/
case Operation::MOVEtoSR:
status.set_status(src.w);
flow_controller.did_update_status();
break;
case Operation::MOVEfromSR:
src.w = status.status();
break;
case Operation::MOVEtoCCR:
status.set_ccr(src.w);
break;
case Operation::MOVEtoUSP:
flow_controller.move_to_usp(src.l);
break;
case Operation::MOVEfromUSP:
flow_controller.move_from_usp(src.l);
break;
case Operation::EXTbtow:
src.w = uint16_t(int8_t(src.b));
status.overflow_flag = status.carry_flag = 0;
status.set_neg_zero(src.w);
break;
case Operation::EXTwtol:
src.l = u_extend16(src.w);
status.overflow_flag = status.carry_flag = 0;
status.set_neg_zero(src.l);
break;
case Operation::ANDItoSR: Primitive::apply_sr_ccr<Operation::ANDItoSR>(src.w, status, flow_controller); break;
case Operation::EORItoSR: Primitive::apply_sr_ccr<Operation::EORItoSR>(src.w, status, flow_controller); break;
case Operation::ORItoSR: Primitive::apply_sr_ccr<Operation::ORItoSR>(src.w, status, flow_controller); break;
case Operation::ANDItoCCR: Primitive::apply_sr_ccr<Operation::ANDItoCCR>(src.w, status, flow_controller); break;
case Operation::EORItoCCR: Primitive::apply_sr_ccr<Operation::EORItoCCR>(src.w, status, flow_controller); break;
case Operation::ORItoCCR: Primitive::apply_sr_ccr<Operation::ORItoCCR>(src.w, status, flow_controller); break;
/*
Multiplications.
*/
case Operation::MULUw: Primitive::multiply<true>(src.w, dest.l, status, flow_controller); break;
case Operation::MULSw: Primitive::multiply<false>(src.w, dest.l, status, flow_controller); break;
/*
Divisions.
*/
case Operation::DIVUw: Primitive::divide<true, uint16_t, uint32_t>(src.w, dest.l, status, flow_controller); break;
case Operation::DIVSw: Primitive::divide<false, int16_t, int32_t>(src.w, dest.l, status, flow_controller); break;
// TRAP, which is a nicer form of ILLEGAL.
case Operation::TRAP:
flow_controller.template raise_exception<false>(int(src.l + Exception::TrapBase));
break;
case Operation::TRAPV: {
if(status.overflow_flag) {
flow_controller.template raise_exception<false>(Exception::TRAPV);
}
} break;
case Operation::CHKw: {
const bool is_under = s_extend16(dest.w) < 0;
const bool is_over = s_extend16(dest.w) > s_extend16(src.w);
status.overflow_flag = status.carry_flag = 0;
status.zero_result = dest.w;
// Test applied for N:
//
// if Dn < 0, set negative flag;
// otherwise, if Dn > <ea>, reset negative flag.
if(is_over) status.negative_flag = 0;
if(is_under) status.negative_flag = 1;
// No exception is the default course of action; deviate only if an
// exception is necessary.
flow_controller.did_chk(is_under, is_over);
if(is_under || is_over) {
flow_controller.template raise_exception<false>(Exception::CHK);
}
} break;
/*
NEGs: negatives the destination, setting the zero,
negative, overflow and carry flags appropriate, and extend.
NB: since the same logic as SUB is used to calculate overflow,
and SUB calculates `destination - source`, the NEGs deliberately
label 'source' and 'destination' differently from Motorola.
*/
case Operation::NEGb: Primitive::negative<false>(src.b, status); break;
case Operation::NEGw: Primitive::negative<false>(src.w, status); break;
case Operation::NEGl: Primitive::negative<false>(src.l, status); break;
/*
NEGXs: NEG, with extend.
*/
case Operation::NEGXb: Primitive::negative<true>(src.b, status); break;
case Operation::NEGXw: Primitive::negative<true>(src.w, status); break;
case Operation::NEGXl: Primitive::negative<true>(src.l, status); break;
/*
The no-op.
*/
case Operation::NOP: break;
/*
LINK and UNLINK help with stack frames, allowing a certain
amount of stack space to be allocated or deallocated.
*/
case Operation::LINKw:
flow_controller.link(instruction, uint32_t(int16_t(dest.w)));
break;
case Operation::UNLINK:
flow_controller.unlink(src.l);
break;
/*
TAS: requiring a specialised bus cycle, just kick this out to the flow controller.
*/
case Operation::TAS:
flow_controller.tas(instruction, src.l);
break;
/*
Bitwise operators: AND, OR and EOR. All three clear the overflow and carry flags,
and set zero and negative appropriately.
*/
case Operation::ANDb: Primitive::bitwise<Operation::ANDb>(src.b, dest.b, status); break;
case Operation::ANDw: Primitive::bitwise<Operation::ANDw>(src.w, dest.w, status); break;
case Operation::ANDl: Primitive::bitwise<Operation::ANDl>(src.l, dest.l, status); break;
case Operation::ORb: Primitive::bitwise<Operation::ORb>(src.b, dest.b, status); break;
case Operation::ORw: Primitive::bitwise<Operation::ORw>(src.w, dest.w, status); break;
case Operation::ORl: Primitive::bitwise<Operation::ORl>(src.l, dest.l, status); break;
case Operation::EORb: Primitive::bitwise<Operation::EORb>(src.b, dest.b, status); break;
case Operation::EORw: Primitive::bitwise<Operation::EORw>(src.w, dest.w, status); break;
case Operation::EORl: Primitive::bitwise<Operation::EORl>(src.l, dest.l, status); break;
case Operation::NOTb: Primitive::bitwise<Operation::EORb>(uint8_t(~0), src.b, status); break;
case Operation::NOTw: Primitive::bitwise<Operation::EORw>(uint16_t(~0), src.w, status); break;
case Operation::NOTl: Primitive::bitwise<Operation::EORl>(uint32_t(~0), src.l, status); break;
/*
SBCD subtracts the lowest byte of the source from that of the destination using
BCD arithmetic, obeying the extend flag.
*/
case Operation::SBCD:
Primitive::sbcd(src.b, dest.b, dest.b, status);
break;
/*
NBCD is like SBCD except that the result is 0 - source rather than
destination - source.
*/
case Operation::NBCD:
Primitive::sbcd(src.b, 0, src.b, status);
break;
// EXG and SWAP exchange/swap words or long words.
case Operation::EXG: {
const auto temporary = src.l;
src.l = dest.l;
dest.l = temporary;
} break;
case Operation::SWAP: {
uint16_t *const words = reinterpret_cast<uint16_t *>(&src.l);
std::swap(words[0], words[1]);
status.set_neg_zero(src.l);
status.overflow_flag = status.carry_flag = 0;
} break;
/*
Shifts and rotates.
*/
case Operation::ASLm:
status.extend_flag = status.carry_flag = src.w & Numeric::top_bit<uint16_t>();
status.overflow_flag = (src.w ^ (src.w << 1)) & Numeric::top_bit<uint16_t>();
src.w <<= 1;
status.set_neg_zero(src.w);
break;
case Operation::LSLm:
status.extend_flag = status.carry_flag = src.w & Numeric::top_bit<uint16_t>();
status.overflow_flag = 0;
src.w <<= 1;
status.set_neg_zero(src.w);
break;
case Operation::ASRm:
status.extend_flag = status.carry_flag = src.w & 1;
status.overflow_flag = 0;
src.w = (src.w & Numeric::top_bit<uint16_t>()) | (src.w >> 1);
status.set_neg_zero(src.w);
break;
case Operation::LSRm:
status.extend_flag = status.carry_flag = src.w & 1;
status.overflow_flag = 0;
src.w >>= 1;
status.set_neg_zero(src.w);
break;
case Operation::ROLm:
src.w = uint16_t((src.w << 1) | (src.w >> 15));
status.carry_flag = src.w & 0x0001;
status.overflow_flag = 0;
status.set_neg_zero(src.w);
break;
case Operation::RORm:
src.w = uint16_t((src.w >> 1) | (src.w << 15));
status.carry_flag = src.w & Numeric::top_bit<uint16_t>();
status.overflow_flag = 0;
status.set_neg_zero(src.w);
break;
case Operation::ROXLm:
status.carry_flag = src.w & Numeric::top_bit<uint16_t>();
src.w = uint16_t((src.w << 1) | (status.extend_flag ? 0x0001 : 0x0000));
status.extend_flag = status.carry_flag;
status.overflow_flag = 0;
status.set_neg_zero(src.w);
break;
case Operation::ROXRm:
status.carry_flag = src.w & 0x0001;
src.w = uint16_t((src.w >> 1) | (status.extend_flag ? 0x8000 : 0x0000));
status.extend_flag = status.carry_flag;
status.overflow_flag = 0;
status.set_neg_zero(src.w);
break;
case Operation::ASLb: Primitive::shift<Operation::ASLb>(src.l, dest.b, status, flow_controller); break;
case Operation::ASLw: Primitive::shift<Operation::ASLw>(src.l, dest.w, status, flow_controller); break;
case Operation::ASLl: Primitive::shift<Operation::ASLl>(src.l, dest.l, status, flow_controller); break;
case Operation::ASRb: Primitive::shift<Operation::ASRb>(src.l, dest.b, status, flow_controller); break;
case Operation::ASRw: Primitive::shift<Operation::ASRw>(src.l, dest.w, status, flow_controller); break;
case Operation::ASRl: Primitive::shift<Operation::ASRl>(src.l, dest.l, status, flow_controller); break;
case Operation::LSLb: Primitive::shift<Operation::LSLb>(src.l, dest.b, status, flow_controller); break;
case Operation::LSLw: Primitive::shift<Operation::LSLw>(src.l, dest.w, status, flow_controller); break;
case Operation::LSLl: Primitive::shift<Operation::LSLl>(src.l, dest.l, status, flow_controller); break;
case Operation::LSRb: Primitive::shift<Operation::LSRb>(src.l, dest.b, status, flow_controller); break;
case Operation::LSRw: Primitive::shift<Operation::LSRw>(src.l, dest.w, status, flow_controller); break;
case Operation::LSRl: Primitive::shift<Operation::LSRl>(src.l, dest.l, status, flow_controller); break;
case Operation::ROLb: Primitive::rotate<Operation::ROLb>(src.l, dest.b, status, flow_controller); break;
case Operation::ROLw: Primitive::rotate<Operation::ROLw>(src.l, dest.w, status, flow_controller); break;
case Operation::ROLl: Primitive::rotate<Operation::ROLl>(src.l, dest.l, status, flow_controller); break;
case Operation::RORb: Primitive::rotate<Operation::RORb>(src.l, dest.b, status, flow_controller); break;
case Operation::RORw: Primitive::rotate<Operation::RORw>(src.l, dest.w, status, flow_controller); break;
case Operation::RORl: Primitive::rotate<Operation::RORl>(src.l, dest.l, status, flow_controller); break;
case Operation::ROXLb: Primitive::rox<Operation::ROXLb>(src.l, dest.b, status, flow_controller); break;
case Operation::ROXLw: Primitive::rox<Operation::ROXLw>(src.l, dest.w, status, flow_controller); break;
case Operation::ROXLl: Primitive::rox<Operation::ROXLl>(src.l, dest.l, status, flow_controller); break;
case Operation::ROXRb: Primitive::rox<Operation::ROXRb>(src.l, dest.b, status, flow_controller); break;
case Operation::ROXRw: Primitive::rox<Operation::ROXRw>(src.l, dest.w, status, flow_controller); break;
case Operation::ROXRl: Primitive::rox<Operation::ROXRl>(src.l, dest.l, status, flow_controller); break;
case Operation::MOVEPl:
flow_controller.template movep<uint32_t>(instruction, src.l, dest.l);
break;
case Operation::MOVEPw:
flow_controller.template movep<uint16_t>(instruction, src.l, dest.l);
break;
case Operation::MOVEMtoRl:
flow_controller.template movem_toR<uint32_t>(instruction, src.l, dest.l);
break;
case Operation::MOVEMtoMl:
flow_controller.template movem_toM<uint32_t>(instruction, src.l, dest.l);
break;
case Operation::MOVEMtoRw:
flow_controller.template movem_toR<uint16_t>(instruction, src.l, dest.l);
break;
case Operation::MOVEMtoMw:
flow_controller.template movem_toM<uint16_t>(instruction, src.l, dest.l);
break;
/*
RTE, RTR and RTS defer to the flow controller.
*/
case Operation::RTR: flow_controller.rtr(); break;
case Operation::RTE: flow_controller.rte(); break;
case Operation::RTS: flow_controller.rts(); break;
/*
TSTs: compare to zero.
*/
case Operation::TSTb: Primitive::test(src.b, status); break;
case Operation::TSTw: Primitive::test(src.w, status); break;
case Operation::TSTl: Primitive::test(src.l, status); break;
case Operation::STOP:
status.set_status(src.w);
flow_controller.did_update_status();
flow_controller.stop();
break;
case Operation::RESET:
flow_controller.reset();
break;
/*
Development period debugging.
*/
default:
assert(false);
break;
}
}
}