1
0
mirror of https://github.com/TomHarte/CLK.git synced 2025-01-16 11:30:22 +00:00
CLK/InstructionSets/M68k/Implementation/ExecutorImplementation.hpp

696 lines
21 KiB
C++

//
// ExecutorImplementation.hpp
// Clock Signal
//
// Created by Thomas Harte on 01/05/2022.
// Copyright © 2022 Thomas Harte. All rights reserved.
//
#ifndef InstructionSets_M68k_ExecutorImplementation_hpp
#define InstructionSets_M68k_ExecutorImplementation_hpp
#include "../Perform.hpp"
#include "../ExceptionVectors.hpp"
#include <cassert>
namespace InstructionSet {
namespace M68k {
#define An(x) state_.registers[8 + x]
#define Dn(x) state_.registers[x]
#define sp An(7)
#define AccessException(code, address, vector) \
uint64_t(((vector) << 8) | uint64_t(code) | ((address) << 16))
// MARK: - Executor itself.
template <Model model, typename BusHandler>
Executor<model, BusHandler>::Executor(BusHandler &handler) : state_(handler) {
reset();
}
template <Model model, typename BusHandler>
void Executor<model, BusHandler>::reset() {
// Establish: supervisor state, all interrupts blocked.
state_.status.set_status(0b0010'0011'1000'0000);
state_.did_update_status();
// Clear the STOPped state, if currently active.
state_.stopped = false;
// Seed stack pointer and program counter.
sp.l = state_.template read<uint32_t>(0) & 0xffff'fffe;
state_.program_counter.l = state_.template read<uint32_t>(4);
}
template <Model model, typename BusHandler>
void Executor<model, BusHandler>::signal_bus_error(FunctionCode code, uint32_t address) {
throw AccessException(code, address, Exception::AccessFault);
}
template <Model model, typename BusHandler>
void Executor<model, BusHandler>::set_interrupt_level(int level) {
state_.interrupt_input_ = level;
state_.stopped &= !state_.status.would_accept_interrupt(level);
}
template <Model model, typename BusHandler>
void Executor<model, BusHandler>::run_for_instructions(int count) {
if(state_.stopped) return;
while(count > 0) {
try {
state_.run(count);
} catch (uint64_t exception) {
// Potiental source of an exception #1: STOP. Check for that first.
if(state_.stopped) return;
// Unpack the exception; this is the converse of the AccessException macro.
const int vector_address = (exception >> 6) & 0xfc;
const uint16_t code = uint16_t(exception & 0xff);
const uint32_t faulting_address = uint32_t(exception >> 16);
// Grab the status to store, then switch into supervisor mode.
const uint16_t status = state_.status.status();
state_.status.is_supervisor = true;
state_.status.trace_flag = 0;
state_.did_update_status();
// Ensure no tracing occurs into the exception.
state_.should_trace = 0;
// Push status and the program counter at instruction start.
state_.template write<uint16_t>(sp.l - 14, code);
state_.template write<uint32_t>(sp.l - 12, faulting_address);
state_.template write<uint16_t>(sp.l - 8, state_.instruction_opcode);
state_.template write<uint16_t>(sp.l - 6, status);
state_.template write<uint16_t>(sp.l - 4, state_.instruction_address);
sp.l -= 14;
// Fetch the new program counter; reset on a double fault.
try {
state_.program_counter.l = state_.template read<uint32_t>(vector_address);
} catch (uint64_t) {
// TODO: I think this is incorrect, but need to verify consistency
// across different 680x0s.
reset();
}
}
}
}
template <Model model, typename BusHandler>
RegisterSet Executor<model, BusHandler>::get_state() {
RegisterSet result;
for(int c = 0; c < 8; c++) {
result.data[c] = Dn(c).l;
}
for(int c = 0; c < 7; c++) {
result.address[c] = An(c).l;
}
result.status = state_.status.status();
result.program_counter = state_.program_counter.l;
state_.stack_pointers[state_.active_stack_pointer] = sp;
result.user_stack_pointer = state_.stack_pointers[0].l;
result.supervisor_stack_pointer = state_.stack_pointers[1].l;
return result;
}
template <Model model, typename BusHandler>
void Executor<model, BusHandler>::set_state(const RegisterSet &state) {
for(int c = 0; c < 8; c++) {
Dn(c).l = state.data[c];
}
for(int c = 0; c < 7; c++) {
An(c).l = state.address[c];
}
state_.status.set_status(state.status);
state_.did_update_status();
state_.program_counter.l = state.program_counter;
state_.stack_pointers[0].l = state.user_stack_pointer;
state_.stack_pointers[1].l = state.supervisor_stack_pointer;
sp = state_.stack_pointers[state_.active_stack_pointer];
}
#undef Dn
#undef An
// MARK: - State.
#define An(x) registers[8 + x]
#define Dn(x) registers[x]
template <Model model, typename BusHandler>
template <typename IntT>
IntT Executor<model, BusHandler>::State::read(uint32_t address, bool is_from_pc) {
const auto code = FunctionCode((active_stack_pointer << 2) | 1 << int(is_from_pc));
if(model == Model::M68000 && sizeof(IntT) > 1 && address & 1) {
throw AccessException(code, address, Exception::AddressError | (int(is_from_pc) << 3) | (1 << 4));
}
return bus_handler_.template read<IntT>(address, code);
}
template <Model model, typename BusHandler>
template <typename IntT>
void Executor<model, BusHandler>::State::write(uint32_t address, IntT value) {
const auto code = FunctionCode((active_stack_pointer << 2) | 1);
if(model == Model::M68000 && sizeof(IntT) > 1 && address & 1) {
throw AccessException(code, address, Exception::AddressError);
}
bus_handler_.template write<IntT>(address, value, code);
}
template <Model model, typename BusHandler>
void Executor<model, BusHandler>::State::read(DataSize size, uint32_t address, CPU::SlicedInt32 &value) {
switch(size) {
case DataSize::Byte: value.b = read<uint8_t>(address); break;
case DataSize::Word: value.w = read<uint16_t>(address); break;
case DataSize::LongWord: value.l = read<uint32_t>(address); break;
}
}
template <Model model, typename BusHandler>
void Executor<model, BusHandler>::State::write(DataSize size, uint32_t address, CPU::SlicedInt32 value) {
switch(size) {
case DataSize::Byte: write<uint8_t>(address, value.b); break;
case DataSize::Word: write<uint16_t>(address, value.w); break;
case DataSize::LongWord: write<uint32_t>(address, value.l); break;
}
}
template <Model model, typename BusHandler>
template <typename IntT> IntT Executor<model, BusHandler>::State::read_pc() {
const IntT result = read<IntT>(program_counter.l, true);
if constexpr (sizeof(IntT) == 4) {
program_counter.l += 4;
} else {
program_counter.l += 2;
}
return result;
}
template <Model model, typename BusHandler>
uint32_t Executor<model, BusHandler>::State::index_8bitdisplacement() {
// TODO: if not a 68000, check bit 8 for whether this should be a full extension word;
// also include the scale field even if not.
const auto extension = read_pc<uint16_t>();
const auto offset = int8_t(extension);
const int register_index = (extension >> 12) & 15;
const uint32_t displacement = registers[register_index].l;
const uint32_t sized_displacement = (extension & 0x800) ? displacement : int16_t(displacement);
return offset + sized_displacement;
}
template <Model model, typename BusHandler>
typename Executor<model, BusHandler>::State::EffectiveAddress
Executor<model, BusHandler>::State::calculate_effective_address(Preinstruction instruction, uint16_t opcode, int index) {
EffectiveAddress ea;
switch(instruction.mode(index)) {
case AddressingMode::None:
// Permit an uninitialised effective address to be returned;
// this value shouldn't be used.
break;
//
// Operands that don't have effective addresses, which are returned as values.
//
case AddressingMode::DataRegisterDirect:
case AddressingMode::AddressRegisterDirect:
ea.value = registers[instruction.lreg(index)];
ea.requires_fetch = false;
break;
case AddressingMode::Quick:
ea.value.l = quick(opcode, instruction.operation);
ea.requires_fetch = false;
break;
case AddressingMode::ImmediateData:
switch(instruction.operand_size()) {
case DataSize::Byte:
ea.value.l = read_pc<uint16_t>() & 0xff;
break;
case DataSize::Word:
ea.value.l = read_pc<uint16_t>();
break;
case DataSize::LongWord:
ea.value.l = read_pc<uint32_t>();
break;
}
ea.requires_fetch = false;
break;
//
// Absolute addresses.
//
case AddressingMode::AbsoluteShort:
ea.value.l = int16_t(read_pc<uint16_t>());
ea.requires_fetch = true;
break;
case AddressingMode::AbsoluteLong:
ea.value.l = read_pc<uint32_t>();
ea.requires_fetch = true;
break;
//
// Address register indirects.
//
case AddressingMode::AddressRegisterIndirect:
ea.value = An(instruction.reg(index));
ea.requires_fetch = true;
break;
case AddressingMode::AddressRegisterIndirectWithPostincrement: {
const auto reg = instruction.reg(index);
ea.value = An(reg);
ea.requires_fetch = true;
switch(instruction.operand_size()) {
case DataSize::Byte: An(reg).l += byte_increments[reg]; break;
case DataSize::Word: An(reg).l += 2; break;
case DataSize::LongWord: An(reg).l += 4; break;
}
} break;
case AddressingMode::AddressRegisterIndirectWithPredecrement: {
const auto reg = instruction.reg(index);
switch(instruction.operand_size()) {
case DataSize::Byte: An(reg).l -= byte_increments[reg]; break;
case DataSize::Word: An(reg).l -= 2; break;
case DataSize::LongWord: An(reg).l -= 4; break;
}
ea.value = An(reg);
ea.requires_fetch = true;
} break;
case AddressingMode::AddressRegisterIndirectWithDisplacement:
ea.value.l = An(instruction.reg(index)).l + int16_t(read_pc<uint16_t>());
ea.requires_fetch = true;
break;
case AddressingMode::AddressRegisterIndirectWithIndex8bitDisplacement:
ea.value.l = An(instruction.reg(index)).l + index_8bitdisplacement();
ea.requires_fetch = true;
break;
//
// PC-relative addresses.
//
case AddressingMode::ProgramCounterIndirectWithDisplacement:
ea.value.l = program_counter.l + int16_t(read_pc<uint16_t>());
ea.requires_fetch = true;
break;
case AddressingMode::ProgramCounterIndirectWithIndex8bitDisplacement:
ea.value.l = program_counter.l + index_8bitdisplacement();
ea.requires_fetch = true;
break;
default:
assert(false);
}
return ea;
}
template <Model model, typename BusHandler>
void Executor<model, BusHandler>::State::run(int &count) {
while(count--) {
// Check for a new interrupt.
if(status.would_accept_interrupt(interrupt_input)) {
const int vector = bus_handler_.acknowlege_interrupt(interrupt_input);
if(vector >= 0) {
raise_exception<false>(vector);
} else {
raise_exception<false>(Exception::InterruptAutovectorBase - 1 + interrupt_input);
}
status.interrupt_level = interrupt_input;
}
// Capture the trace bit, indicating whether to trace
// after this instruction.
//
// If an exception occurs, this value will be cleared, but
// it'll persist across mere status register changes for
// one instruction's duration.
should_trace = status.trace_flag;
// Read the next instruction.
instruction_address = program_counter.l;
instruction_opcode = read_pc<uint16_t>();
const Preinstruction instruction = decoder_.decode(instruction_opcode);
if(instruction.requires_supervisor() && !status.is_supervisor) {
raise_exception(Exception::PrivilegeViolation);
continue;
}
if(instruction.operation == Operation::Undefined) {
switch(instruction_opcode & 0xf000) {
default:
raise_exception(Exception::IllegalInstruction);
continue;
case 0xa000:
raise_exception(Exception::Line1010);
continue;
case 0xf000:
raise_exception(Exception::Line1111);
continue;
}
}
// Temporary storage.
CPU::SlicedInt32 operand_[2];
EffectiveAddress effective_address_[2];
// Calculate effective addresses; copy 'addresses' into the
// operands by default both: (i) because they might be values,
// rather than addresses; and (ii) then they'll be there for use
// by LEA and PEA.
effective_address_[0] = calculate_effective_address(instruction, instruction_opcode, 0);
effective_address_[1] = calculate_effective_address(instruction, instruction_opcode, 1);
operand_[0] = effective_address_[0].value;
operand_[1] = effective_address_[1].value;
// Obtain the appropriate sequence.
const auto flags = operand_flags<model>(instruction.operation);
#define fetch_operand(n) \
if(effective_address_[n].requires_fetch) { \
read(instruction.operand_size(), effective_address_[n].value.l, operand_[n]); \
}
if(flags & FetchOp1) { fetch_operand(0); }
if(flags & FetchOp2) { fetch_operand(1); }
#undef fetch_operand
perform<model>(instruction, operand_[0], operand_[1], status, *this);
#define store_operand(n) \
if(!effective_address_[n].requires_fetch) { \
registers[instruction.lreg(n)] = operand_[n]; \
} else { \
write(instruction.operand_size(), effective_address_[n].value.l, operand_[n]); \
}
if(flags & StoreOp1) { store_operand(0); }
if(flags & StoreOp2) { store_operand(1); }
#undef store_operand
// If the trace bit was set, trigger the trace exception.
if(should_trace) {
raise_exception<false>(Exception::Trace);
}
}
}
// MARK: - Flow Control.
template <Model model, typename BusHandler>
template <bool use_current_instruction_pc>
void Executor<model, BusHandler>::State::raise_exception(int index) {
const uint32_t address = index << 2;
// Grab the status to store, then switch into supervisor mode
// and disable tracing.
const uint16_t previous_status = status.status();
status.is_supervisor = true;
status.trace_flag = 0;
did_update_status();
// Push status and the program counter at instruction start.
write<uint32_t>(sp.l - 4, use_current_instruction_pc ? instruction_address : program_counter.l);
write<uint16_t>(sp.l - 6, previous_status);
sp.l -= 6;
// Ensure no tracing occurs into the exception.
should_trace = 0;
// Fetch the new program counter.
program_counter.l = read<uint32_t>(address);
}
template <Model model, typename BusHandler>
void Executor<model, BusHandler>::State::did_update_status() {
// Shuffle the stack pointers.
stack_pointers[active_stack_pointer] = sp;
sp = stack_pointers[int(status.is_supervisor)];
active_stack_pointer = int(status.is_supervisor);
}
template <Model model, typename BusHandler>
void Executor<model, BusHandler>::State::stop() {
stopped = true;
// Raise an exception to exit the run loop; it doesn't matter
// what value is used as long as it is a uint64_t, so 0 will do.
throw uint64_t();
}
template <Model model, typename BusHandler>
void Executor<model, BusHandler>::State::reset() {
bus_handler_.reset();
}
template <Model model, typename BusHandler>
void Executor<model, BusHandler>::State::jmp(uint32_t address) {
program_counter.l = address;
}
template <Model model, typename BusHandler>
template <typename IntT> void Executor<model, BusHandler>::State::complete_bcc(bool branch, IntT offset) {
if(branch) {
program_counter.l = instruction_address + offset + 2;
}
}
template <Model model, typename BusHandler>
void Executor<model, BusHandler>::State::complete_dbcc(bool matched_condition, bool overflowed, int16_t offset) {
if(!matched_condition && !overflowed) {
program_counter.l = instruction_address + offset + 2;
}
}
template <Model model, typename BusHandler>
void Executor<model, BusHandler>::State::bsr(uint32_t offset) {
sp.l -= 4;
write<uint32_t>(sp.l, program_counter.l);
program_counter.l = instruction_address + offset + 2;
}
template <Model model, typename BusHandler>
void Executor<model, BusHandler>::State::jsr(uint32_t address) {
sp.l -= 4;
write<uint32_t>(sp.l, program_counter.l);
program_counter.l = address;
}
template <Model model, typename BusHandler>
void Executor<model, BusHandler>::State::link(Preinstruction instruction, uint32_t offset) {
const auto reg = 8 + instruction.reg<0>();
sp.l -= 4;
write<uint32_t>(sp.l, Dn(reg).l);
Dn(reg) = sp;
sp.l += offset;
}
template <Model model, typename BusHandler>
void Executor<model, BusHandler>::State::unlink(uint32_t &address) {
sp.l = address;
address = read<uint32_t>(sp.l);
sp.l += 4;
}
template <Model model, typename BusHandler>
void Executor<model, BusHandler>::State::pea(uint32_t address) {
sp.l -= 4;
write<uint32_t>(sp.l, address);
}
template <Model model, typename BusHandler>
void Executor<model, BusHandler>::State::rtr() {
status.set_ccr(read<uint16_t>(sp.l));
sp.l += 2;
rts();
}
template <Model model, typename BusHandler>
void Executor<model, BusHandler>::State::rte() {
status.set_status(read<uint16_t>(sp.l));
sp.l += 2;
rts();
}
template <Model model, typename BusHandler>
void Executor<model, BusHandler>::State::rts() {
program_counter.l = read<uint32_t>(sp.l);
sp.l += 4;
}
template <Model model, typename BusHandler>
void Executor<model, BusHandler>::State::tas(Preinstruction instruction, uint32_t address) {
uint8_t value;
if(instruction.mode<0>() != AddressingMode::DataRegisterDirect) {
value = read<uint8_t>(address);
write<uint8_t>(address, value | 0x80);
} else {
value = uint8_t(address);
Dn(instruction.reg<0>()).b = uint8_t(address | 0x80);
}
status.overflow_flag = status.carry_flag = 0;
status.zero_result = value;
status.negative_flag = value & 0x80;
}
template <Model model, typename BusHandler>
void Executor<model, BusHandler>::State::move_to_usp(uint32_t address) {
stack_pointers[0].l = address;
}
template <Model model, typename BusHandler>
void Executor<model, BusHandler>::State::move_from_usp(uint32_t &address) {
address = stack_pointers[0].l;
}
template <Model model, typename BusHandler>
template <typename IntT>
void Executor<model, BusHandler>::State::movep(Preinstruction instruction, uint32_t source, uint32_t dest) {
if(instruction.mode<0>() == AddressingMode::DataRegisterDirect) {
// Move register to memory.
const uint32_t reg = source;
uint32_t address = dest;
if constexpr (sizeof(IntT) == 4) {
write<uint8_t>(address, uint8_t(reg >> 24));
address += 2;
write<uint8_t>(address, uint8_t(reg >> 16));
address += 2;
}
write<uint8_t>(address, uint8_t(reg >> 8));
address += 2;
write<uint8_t>(address, uint8_t(reg));
} else {
// Move memory to register.
uint32_t &reg = Dn(instruction.reg<1>()).l;
uint32_t address = source;
if constexpr (sizeof(IntT) == 4) {
reg = read<uint8_t>(address) << 24;
address += 2;
reg |= read<uint8_t>(address) << 16;
address += 2;
} else {
reg &= 0xffff0000;
}
reg |= read<uint8_t>(address) << 8;
address += 2;
reg |= read<uint8_t>(address);
}
}
template <Model model, typename BusHandler>
template <typename IntT>
void Executor<model, BusHandler>::State::movem_toM(Preinstruction instruction, uint32_t source, uint32_t dest) {
// Move registers to memory. This is the only permitted use of the predecrement mode,
// which reverses output order.
if(instruction.mode<1>() == AddressingMode::AddressRegisterIndirectWithPredecrement) {
// The structure of the code in the mainline part of the executor is such
// that the address register will already have been predecremented before
// reaching here, and it'll have been by two bytes per the operand size
// rather than according to the instruction size. That's not wanted, so undo it.
//
// TODO: with the caveat that the 68020+ have different behaviour:
//
// "For the MC68020, MC68030, MC68040, and CPU32, if the addressing register is also
// moved to memory, the value written is the initial register value decremented by the
// size of the operation. The MC68000 and MC68010 write the initial register value
// (not decremented)."
An(instruction.reg<1>()).l += 2;
uint32_t address = An(instruction.reg<1>()).l;
int index = 15;
while(source) {
if(source & 1) {
address -= sizeof(IntT);
write<IntT>(address, IntT(registers[index].l));
}
--index;
source >>= 1;
}
An(instruction.reg<1>()).l = address;
return;
}
int index = 0;
while(source) {
if(source & 1) {
write<IntT>(dest, IntT(registers[index].l));
dest += sizeof(IntT);
}
++index;
source >>= 1;
}
}
template <Model model, typename BusHandler>
template <typename IntT>
void Executor<model, BusHandler>::State::movem_toR(Preinstruction instruction, uint32_t source, uint32_t dest) {
// Move memory to registers.
//
// A 68000 convention has been broken here; the instruction form is:
// MOVEM <ea>, #
// ... but the instruction is encoded as [MOVEM] [#] [ea].
//
// This project's decoder decodes as #, <ea>.
int index = 0;
while(source) {
if(source & 1) {
if constexpr (sizeof(IntT) == 2) {
registers[index].l = int16_t(read<uint16_t>(dest));
} else {
registers[index].l = read<uint32_t>(dest);
}
dest += sizeof(IntT);
}
++index;
source >>= 1;
}
if(instruction.mode<1>() == AddressingMode::AddressRegisterIndirectWithPostincrement) {
// "If the effective address is specified by the postincrement mode ...
// [i]f the addressing register is also loaded from memory, the memory value is
// ignored and the register is written with the postincremented effective address."
An(instruction.reg<1>()).l = dest;
}
}
#undef sp
#undef Dn
#undef An
#undef AccessException
}
}
#endif /* InstructionSets_M68k_ExecutorImplementation_hpp */