1
0
mirror of https://github.com/TomHarte/CLK.git synced 2024-07-07 23:29:06 +00:00
CLK/Outputs/CRT.cpp

316 lines
10 KiB
C++

//
// CRT.cpp
// Clock Signal
//
// Created by Thomas Harte on 19/07/2015.
// Copyright © 2015 Thomas Harte. All rights reserved.
//
#include "CRT.hpp"
#include <stdarg.h>
static const int bufferWidth = 512;
static const int bufferHeight = 512;
using namespace Outputs;
CRT::CRT(int cycles_per_line, int height_of_display, int number_of_buffers, ...)
{
static const int syncCapacityLineChargeThreshold = 3;
static const int millisecondsHorizontalRetraceTime = 16;
static const int scanlinesVerticalRetraceTime = 26;
// store fundamental display configuration properties
_height_of_display = height_of_display;
_cycles_per_line = cycles_per_line;
// generate timing values implied by the given arbuments
_hsync_error_window = cycles_per_line >> 5;
_sync_capacitor_charge_threshold = syncCapacityLineChargeThreshold * cycles_per_line;
_horizontal_retrace_time = (millisecondsHorizontalRetraceTime * cycles_per_line) >> 6;
_vertical_retrace_time = scanlinesVerticalRetraceTime * cycles_per_line;
_scanSpeed.x = 1.0f / (float)cycles_per_line;
_scanSpeed.y = 1.0f / (float)(height_of_display * cycles_per_line);
_retraceSpeed.x = 1.0f / (float)_horizontal_retrace_time;
_retraceSpeed.y = 1.0f / (float)_vertical_retrace_time;
// generate buffers for signal storage as requested — format is
// number of buffers, size of buffer 1, size of buffer 2...
_numberOfBuffers = number_of_buffers;
_bufferSizes = new int[_numberOfBuffers];
_buffers = new uint8_t *[_numberOfBuffers];
va_list va;
va_start(va, number_of_buffers);
for(int c = 0; c < _numberOfBuffers; c++)
{
_bufferSizes[c] = va_arg(va, int);
_buffers[c] = new uint8_t[bufferHeight * bufferWidth * _bufferSizes[c]];
}
va_end(va);
// reset pointer into output buffers
_write_allocation_pointer = 0;
// reset the run buffer pointer
_run_pointer = 0;
// reset raster position
_rasterPosition.x = _rasterPosition.y = 0.0f;
// reset flywheel sync
_expected_next_hsync = cycles_per_line;
_horizontal_counter = 0;
// reset the vertical charge capacitor
_sync_capacitor_charge_level = 0;
// start off not in horizontal sync, not receiving a sync signal
_is_receiving_sync = false;
_is_in_hsync = false;
_vretrace_counter = 0;
}
CRT::~CRT()
{
delete[] _bufferSizes;
for(int c = 0; c < _numberOfBuffers; c++)
{
delete[] _buffers[c];
}
delete[] _buffers;
}
#pragma mark - Sync loop
CRT::SyncEvent CRT::advance_to_next_sync_event(bool hsync_is_requested, bool vsync_is_charging, int cycles_to_run_for, int *cycles_advanced)
{
// do we recognise this hsync, thereby adjusting time expectations?
if ((_horizontal_counter < _hsync_error_window || _horizontal_counter >= _expected_next_hsync - _hsync_error_window) && hsync_is_requested) {
_did_detect_hsync = true;
int time_now = (_horizontal_counter < _hsync_error_window) ? _expected_next_hsync + _horizontal_counter : _horizontal_counter;
_expected_next_hsync = (_expected_next_hsync + time_now) >> 1;
// printf("to %d for %d\n", _expected_next_hsync, time_now);
}
SyncEvent proposedEvent = SyncEvent::None;
int proposedSyncTime = cycles_to_run_for;
// have we overrun the maximum permitted number of horizontal syncs for this frame?
if (!_vretrace_counter)
{
float raster_distance = _scanSpeed.y * (float)proposedSyncTime;
if(_rasterPosition.y < 1.02f && _rasterPosition.y + raster_distance >= 1.02f) {
proposedSyncTime = (int)(1.02f - _rasterPosition.y) / _scanSpeed.y;
proposedEvent = SyncEvent::StartVSync;
}
}
// will we end an ongoing hsync?
if (_horizontal_counter < _horizontal_retrace_time && _horizontal_counter+proposedSyncTime >= _horizontal_retrace_time) {
proposedSyncTime = _horizontal_retrace_time - _horizontal_counter;
proposedEvent = SyncEvent::EndHSync;
}
// will we start an hsync?
if (_horizontal_counter + proposedSyncTime >= _expected_next_hsync) {
proposedSyncTime = _expected_next_hsync - _horizontal_counter;
proposedEvent = SyncEvent::StartHSync;
}
// will an acceptable vertical sync be triggered?
if (vsync_is_charging && !_vretrace_counter) {
if (_sync_capacitor_charge_level < _sync_capacitor_charge_threshold && _sync_capacitor_charge_level + proposedSyncTime >= _sync_capacitor_charge_threshold) {
proposedSyncTime = _sync_capacitor_charge_threshold - _sync_capacitor_charge_level;
proposedEvent = SyncEvent::StartVSync;
}
}
// will an ongoing vertical sync end?
if (_vretrace_counter > 0) {
if (_vretrace_counter < proposedSyncTime) {
proposedSyncTime = _vretrace_counter;
proposedEvent = SyncEvent::EndVSync;
}
}
*cycles_advanced = proposedSyncTime;
return proposedEvent;
}
void CRT::advance_cycles(int number_of_cycles, bool hsync_requested, const bool vsync_charging, const CRTRun::Type type, const char *data_type)
{
// this is safe to keep locally because it accumulates over this run of cycles only
int buffer_offset = 0;
while(number_of_cycles) {
// get the next sync event and its timing; hsync request is instantaneous (being edge triggered) so
// set it to false for the next run through this loop (if any)
int next_run_length;
SyncEvent next_event = advance_to_next_sync_event(hsync_requested, vsync_charging, number_of_cycles, &next_run_length);
hsync_requested = false;
// get a run from the allocated list, allocating more if we're about to overrun
if(_run_pointer >= _all_runs.size())
{
_all_runs.resize((_all_runs.size() * 2)+1);
}
CRTRun *nextRun = &_all_runs[_run_pointer];
_run_pointer++;
// set the type, initial raster position and type of this run
nextRun->type = type;
nextRun->start_point.dst_x = _rasterPosition.x;
nextRun->start_point.dst_y = _rasterPosition.y;
nextRun->data_type = data_type;
// if this is a data or level run then store a starting data position
if(type == CRTRun::Type::Data || type == CRTRun::Type::Level)
{
nextRun->start_point.src_x = (_write_target_pointer + buffer_offset) & (bufferWidth - 1);
nextRun->start_point.src_y = (_write_target_pointer + buffer_offset) / bufferWidth;
}
// advance the raster position as dictated by current sync status
if (_is_in_hsync)
_rasterPosition.x = std::max(0.0f, _rasterPosition.x - (float)number_of_cycles * _retraceSpeed.x);
else
_rasterPosition.x = std::min(1.0f, _rasterPosition.x + (float)number_of_cycles * _scanSpeed.x);
if (_vretrace_counter > 0)
_rasterPosition.y = std::max(0.0f, _rasterPosition.y - (float)number_of_cycles * _retraceSpeed.y);
else
_rasterPosition.y = std::min(1.0f, _rasterPosition.y + (float)number_of_cycles * _scanSpeed.y);
// store the final raster position
nextRun->end_point.dst_x = _rasterPosition.x;
nextRun->end_point.dst_y = _rasterPosition.y;
// if this is a data run then advance the buffer pointer
if(type == CRTRun::Type::Data)
{
buffer_offset += next_run_length;
}
// if this is a data or level run then store the end point
if(type == CRTRun::Type::Data || type == CRTRun::Type::Level)
{
nextRun->end_point.src_x = (_write_target_pointer + buffer_offset) & (bufferWidth - 1);
nextRun->end_point.src_y = (_write_target_pointer + buffer_offset) / bufferWidth;
}
// decrement the number of cycles left to run for and increment the
// horizontal counter appropriately
number_of_cycles -= next_run_length;
_horizontal_counter += next_run_length;
// either charge or deplete the vertical retrace capacitor (making sure it stops at 0)
if (vsync_charging)
_sync_capacitor_charge_level += next_run_length;
else
_sync_capacitor_charge_level = std::max(_sync_capacitor_charge_level - next_run_length, 0);
// decrement the vertical retrace counter, making sure it stops at 0
_vretrace_counter = std::max(_vretrace_counter - next_run_length, 0);
// react to the incoming event...
switch(next_event) {
// start of hsync: zero the scanline counter, note that we're now in
// horizontal sync, increment the lines-in-this-frame counter
case SyncEvent::StartHSync:
_horizontal_counter = 0;
_is_in_hsync = true;
break;
// end of horizontal sync: update the flywheel's velocity, note that we're no longer
// in horizontal sync
case SyncEvent::EndHSync:
if (!_did_detect_hsync) {
_expected_next_hsync = (_expected_next_hsync + (_hsync_error_window >> 1) + _cycles_per_line) >> 1;
}
_did_detect_hsync = false;
_is_in_hsync = false;
break;
// start of vertical sync: reset the lines-in-this-frame counter,
// load the retrace counter with the amount of time it'll take to retrace
case SyncEvent::StartVSync:
_vretrace_counter = _vertical_retrace_time;
break;
// end of vertical sync: tell the delegate that we finished vertical sync,
// releasing all runs back into the common pool
case SyncEvent::EndVSync:
if(_delegate != nullptr)
_delegate->crt_did_start_vertical_retrace_with_runs(&_all_runs[0], _run_pointer);
_run_pointer = 0;
break;
default: break;
}
}
}
#pragma mark - delegate
void CRT::set_delegate(CRTDelegate *delegate)
{
_delegate = delegate;
}
#pragma mark - stream feeding methods
/*
These all merely channel into advance_cycles, supplying appropriate arguments
*/
void CRT::output_sync(int number_of_cycles)
{
bool _hsync_requested = !_is_receiving_sync; // ensure this really is edge triggered; someone calling output_sync twice in succession shouldn't trigger it twice
_is_receiving_sync = true;
advance_cycles(number_of_cycles, _hsync_requested, true, CRTRun::Type::Sync, nullptr);
}
void CRT::output_blank(int number_of_cycles)
{
_is_receiving_sync = false;
advance_cycles(number_of_cycles, false, false, CRTRun::Type::Blank, nullptr);
}
void CRT::output_level(int number_of_cycles, const char *type)
{
_is_receiving_sync = false;
advance_cycles(number_of_cycles, false, false, CRTRun::Type::Level, type);
}
void CRT::output_data(int number_of_cycles, const char *type)
{
_is_receiving_sync = false;
advance_cycles(number_of_cycles, false, false, CRTRun::Type::Data, type);
}
#pragma mark - Buffer supply
void CRT::allocate_write_area(int required_length)
{
int xPos = _write_allocation_pointer & (bufferWidth - 1);
if (xPos + required_length > bufferWidth)
{
_write_allocation_pointer &= ~(bufferWidth - 1);
_write_allocation_pointer = (_write_allocation_pointer + bufferWidth) & ((bufferHeight-1) * bufferWidth);
}
_write_target_pointer = _write_allocation_pointer;
_write_allocation_pointer += required_length;
}
uint8_t *CRT::get_write_target_for_buffer(int buffer)
{
return &_buffers[buffer][_write_target_pointer * _bufferSizes[buffer]];
}