1
0
mirror of https://github.com/TomHarte/CLK.git synced 2025-01-16 11:30:22 +00:00
CLK/Components/9918/9918.cpp
Thomas Harte ac80d10cd8 Separates the component parts of running an audio stream: task deferral, filtering and generation.
Walking towards improving opportunities for composition.
2017-12-17 21:26:06 -05:00

663 lines
22 KiB
C++

//
// 9918.cpp
// Clock Signal
//
// Created by Thomas Harte on 25/11/2017.
// Copyright © 2017 Thomas Harte. All rights reserved.
//
#include "9918.hpp"
#include <cassert>
#include <cstring>
using namespace TI;
namespace {
const uint32_t palette_pack(uint8_t r, uint8_t g, uint8_t b) {
uint32_t result = 0;
uint8_t *const result_ptr = reinterpret_cast<uint8_t *>(&result);
result_ptr[0] = r;
result_ptr[1] = g;
result_ptr[2] = b;
result_ptr[3] = 0;
return result;
}
const uint32_t palette[16] = {
palette_pack(0, 0, 0),
palette_pack(0, 0, 0),
palette_pack(33, 200, 66),
palette_pack(94, 220, 120),
palette_pack(84, 85, 237),
palette_pack(125, 118, 252),
palette_pack(212, 82, 77),
palette_pack(66, 235, 245),
palette_pack(252, 85, 84),
palette_pack(255, 121, 120),
palette_pack(212, 193, 84),
palette_pack(230, 206, 128),
palette_pack(33, 176, 59),
palette_pack(201, 91, 186),
palette_pack(204, 204, 204),
palette_pack(255, 255, 255)
};
const uint8_t StatusInterrupt = 0x80;
const uint8_t StatusFifthSprite = 0x40;
const int StatusSpriteCollisionShift = 5;
const uint8_t StatusSpriteCollision = 0x20;
}
TMS9918Base::TMS9918Base() :
// 342 internal cycles are 228/227.5ths of a line, so 341.25 cycles should be a whole
// line. Therefore multiply everything by four, but set line length to 1365 rather than 342*4 = 1368.
crt_(new Outputs::CRT::CRT(1365, 4, Outputs::CRT::DisplayType::NTSC60, 4)) {}
TMS9918::TMS9918(Personality p) {
// Unimaginatively, this class just passes RGB through to the shader. Investigation is needed
// into whether there's a more natural form.
crt_->set_rgb_sampling_function(
"vec3 rgb_sample(usampler2D sampler, vec2 coordinate, vec2 icoordinate)"
"{"
"return texture(sampler, coordinate).rgb / vec3(255.0);"
"}");
crt_->set_output_device(Outputs::CRT::OutputDevice::Monitor);
crt_->set_visible_area(Outputs::CRT::Rect(0.055f, 0.025f, 0.9f, 0.9f));
}
Outputs::CRT::CRT *TMS9918::get_crt() {
return crt_.get();
}
void TMS9918Base::test_sprite(int sprite_number) {
if(!(status_ & StatusFifthSprite)) {
status_ = static_cast<uint8_t>((status_ & ~31) | sprite_number);
}
if(sprites_stopped_)
return;
const int sprite_position = ram_[sprite_attribute_table_address_ + (sprite_number << 2)];
// A sprite Y of 208 means "don't scan the list any further".
if(sprite_position == 208) {
sprites_stopped_ = true;
return;
}
const int sprite_row = (row_ - sprite_position)&255;
if(sprite_row < 0 || sprite_row >= sprite_height_) return;
const int active_sprite_slot = sprite_sets_[active_sprite_set_].active_sprite_slot;
if(active_sprite_slot == 4) {
status_ |= StatusFifthSprite;
return;
}
SpriteSet::ActiveSprite &sprite = sprite_sets_[active_sprite_set_].active_sprites[active_sprite_slot];
sprite.index = sprite_number;
sprite.row = sprite_row >> (sprites_magnified_ ? 1 : 0);
sprite_sets_[active_sprite_set_].active_sprite_slot++;
}
void TMS9918Base::get_sprite_contents(int field, int cycles_left, int screen_row) {
int sprite_id = field / 6;
field %= 6;
while(true) {
const int cycles_in_sprite = std::min(cycles_left, 6 - field);
cycles_left -= cycles_in_sprite;
const int final_field = cycles_in_sprite + field;
assert(sprite_id < 4);
SpriteSet::ActiveSprite &sprite = sprite_sets_[active_sprite_set_].active_sprites[sprite_id];
if(field < 4) {
std::memcpy(
&sprite.info[field],
&ram_[sprite_attribute_table_address_ + (sprite.index << 2) + field],
static_cast<size_t>(std::min(4, final_field) - field));
}
field = std::min(4, final_field);
const int sprite_offset = sprite.info[2] & ~(sprites_16x16_ ? 3 : 0);
const int sprite_address = sprite_generator_table_address_ + (sprite_offset << 3) + sprite.row;
while(field < final_field) {
sprite.image[field - 4] = ram_[sprite_address + ((field - 4) << 4)];
field++;
}
if(!cycles_left) return;
field = 0;
sprite_id++;
}
}
void TMS9918::run_for(const HalfCycles cycles) {
// As specific as I've been able to get:
// Scanline time is always 228 cycles.
// PAL output is 313 lines total. NTSC output is 262 lines total.
// Interrupt is signalled upon entering the lower border.
// Keep a count of cycles separate from internal counts to avoid
// potential errors mapping back and forth.
half_cycles_into_frame_ = (half_cycles_into_frame_ + cycles) % HalfCycles(frame_lines_ * 228 * 2);
// Convert 456 clocked half cycles per line to 342 internal cycles per line;
// the internal clock is 1.5 times the nominal 3.579545 Mhz that I've advertised
// for this part. So multiply by three quarters.
int int_cycles = (cycles.as_int() * 3) + cycles_error_;
cycles_error_ = int_cycles & 3;
int_cycles >>= 2;
if(!int_cycles) return;
while(int_cycles) {
// Determine how much time has passed in the remainder of this line, and proceed.
int cycles_left = std::min(342 - column_, int_cycles);
// ------------------------------------
// Potentially perform a memory access.
// ------------------------------------
if(queued_access_ != MemoryAccess::None) {
int time_until_access_slot = 0;
switch(line_mode_) {
case LineMode::Refresh:
if(column_ < 53 || column_ >= 307) time_until_access_slot = column_&1;
else time_until_access_slot = 3 - ((column_ - 53)&3);
// i.e. 53 -> 3, 52 -> 2, 51 -> 1, 50 -> 0, etc
break;
case LineMode::Text:
if(column_ < 59 || column_ >= 299) time_until_access_slot = column_&1;
else time_until_access_slot = 5 - ((column_ + 3)%6);
// i.e. 59 -> 3, 60 -> 2, 61 -> 1, etc
break;
case LineMode::Character:
if(column_ < 9) time_until_access_slot = column_&1;
else if(column_ < 30) time_until_access_slot = 30 - column_;
else if(column_ < 37) time_until_access_slot = column_&1;
else if(column_ < 311) time_until_access_slot = 31 - ((column_ + 7)&31);
// i.e. 53 -> 3, 54 -> 2, 55 -> 1, 56 -> 0, 57 -> 31, etc
else if(column_ < 313) time_until_access_slot = column_&1;
else time_until_access_slot = 342 - column_;
break;
}
if(cycles_left >= time_until_access_slot) {
if(queued_access_ == MemoryAccess::Write) {
ram_[ram_pointer_ & 16383] = read_ahead_buffer_;
} else {
read_ahead_buffer_ = ram_[ram_pointer_ & 16383];
}
ram_pointer_++;
queued_access_ = MemoryAccess::None;
}
}
column_ += cycles_left; // column_ is now the column that has been reached in this line.
int_cycles -= cycles_left; // Count down duration to run for.
// ------------------------------
// Perform video memory accesses.
// ------------------------------
if(((row_ < 192) || (row_ == frame_lines_-1)) && !blank_screen_) {
const int access_slot = column_ >> 1; // There are only 171 available memory accesses per line.
switch(line_mode_) {
default: break;
case LineMode::Text:
access_pointer_ = std::min(30, access_slot);
if(access_pointer_ >= 30 && access_pointer_ < 150) {
const int row_base = pattern_name_address_ + (row_ >> 3) * 40;
const int end = std::min(150, access_slot);
// Pattern names are collected every third window starting from window 30.
const int pattern_names_start = (access_pointer_ - 30 + 2) / 3;
const int pattern_names_end = (end - 30 + 2) / 3;
std::memcpy(&pattern_names_[pattern_names_start], &ram_[row_base + pattern_names_start], static_cast<size_t>(pattern_names_end - pattern_names_start));
// Patterns are collected every third window starting from window 32.
const int pattern_buffer_start = (access_pointer_ - 32 + 2) / 3;
const int pattern_buffer_end = (end - 32 + 2) / 3;
for(int column = pattern_buffer_start; column < pattern_buffer_end; ++column) {
pattern_buffer_[column] = ram_[pattern_generator_table_address_ + (pattern_names_[column] << 3) + (row_ & 7)];
}
}
break;
case LineMode::Character:
// Four access windows: no collection.
if(access_pointer_ < 5)
access_pointer_ = std::min(5, access_slot);
// Then ten access windows are filled with collection of sprite 3 and 4 details.
if(access_pointer_ >= 5 && access_pointer_ < 15) {
int end = std::min(15, access_slot);
get_sprite_contents(access_pointer_ - 5 + 14, end - access_pointer_, row_ - 1);
access_pointer_ = std::min(15, access_slot);
}
// Four more access windows: no collection.
if(access_pointer_ >= 15 && access_pointer_ < 19) {
access_pointer_ = std::min(19, access_slot);
// Start new sprite set if this is location 19.
if(access_pointer_ == 19) {
active_sprite_set_ ^= 1;
sprite_sets_[active_sprite_set_].active_sprite_slot = 0;
sprites_stopped_ = false;
}
}
// Then eight access windows fetch the y position for the first eight sprites.
while(access_pointer_ < 27 && access_pointer_ < access_slot) {
test_sprite(access_pointer_ - 19);
access_pointer_++;
}
// The next 128 access slots are video and sprite collection interleaved.
if(access_pointer_ >= 27 && access_pointer_ < 155) {
int end = std::min(155, access_slot);
int row_base = pattern_name_address_;
int pattern_base = pattern_generator_table_address_;
int colour_base = colour_table_address_;
if(screen_mode_ == 1) {
pattern_base &= 0x2000 | ((row_ & 0xc0) << 5);
colour_base &= 0x2000 | ((row_ & 0xc0) << 5);
}
row_base += (row_ << 2)&~31;
// Pattern names are collected every fourth window starting from window 27.
const int pattern_names_start = (access_pointer_ - 27 + 3) >> 2;
const int pattern_names_end = (end - 27 + 3) >> 2;
std::memcpy(&pattern_names_[pattern_names_start], &ram_[row_base + pattern_names_start], static_cast<size_t>(pattern_names_end - pattern_names_start));
// Colours are collected ever fourth window starting from window 29.
const int colours_start = (access_pointer_ - 29 + 3) >> 2;
const int colours_end = (end - 29 + 3) >> 2;
if(screen_mode_ != 1) {
for(int column = colours_start; column < colours_end; ++column) {
colour_buffer_[column] = ram_[colour_base + (pattern_names_[column] >> 3)];
}
} else {
for(int column = colours_start; column < colours_end; ++column) {
colour_buffer_[column] = ram_[colour_base + (pattern_names_[column] << 3) + (row_ & 7)];
}
}
// Patterns are collected ever fourth window starting from window 30.
const int pattern_buffer_start = (access_pointer_ - 30 + 3) >> 2;
const int pattern_buffer_end = (end - 30 + 3) >> 2;
for(int column = pattern_buffer_start; column < pattern_buffer_end; ++column) {
pattern_buffer_[column] = ram_[pattern_base + (pattern_names_[column] << 3) + (row_ & 7)];
}
// Sprite slots occur in three quarters of ever fourth window starting from window 28.
const int sprite_start = (access_pointer_ - 28 + 3) >> 2;
const int sprite_end = (end - 28 + 3) >> 2;
for(int column = sprite_start; column < sprite_end; ++column) {
if(column&3) {
test_sprite(7 + column - (column >> 2));
}
}
access_pointer_ = std::min(155, access_slot);
}
// Two access windows: no collection.
if(access_pointer_ < 157)
access_pointer_ = std::min(157, access_slot);
// Fourteen access windows: collect initial sprite information.
if(access_pointer_ >= 157 && access_pointer_ < 171) {
int end = std::min(171, access_slot);
get_sprite_contents(access_pointer_ - 157, end - access_pointer_, row_);
access_pointer_ = std::min(171, access_slot);
}
break;
}
}
// --------------------------
// End video memory accesses.
// --------------------------
// --------------------
// Output video stream.
// --------------------
if(row_ < 192 && !blank_screen_) {
// ----------------------
// Output horizontal sync
// ----------------------
if(!output_column_ && column_ >= 26) {
crt_->output_sync(13 * 4);
crt_->output_default_colour_burst(13 * 4);
output_column_ = 26;
}
// -------------------
// Output left border.
// -------------------
if(output_column_ >= 26) {
int pixels_end = std::min(first_pixel_column_, column_);
if(output_column_ < pixels_end) {
output_border(pixels_end - output_column_);
output_column_ = pixels_end;
// Grab a pointer for drawing pixels to, if the moment has arrived.
if(pixels_end == first_pixel_column_) {
pixel_base_ = pixel_target_ = reinterpret_cast<uint32_t *>(crt_->allocate_write_area(static_cast<unsigned int>(first_right_border_column_ - first_pixel_column_)));
}
}
}
// --------------
// Output pixels.
// --------------
if(output_column_ >= first_pixel_column_) {
int pixels_end = std::min(first_right_border_column_, column_);
if(output_column_ < pixels_end) {
switch(line_mode_) {
default: break;
case LineMode::Text: {
const uint32_t colours[2] = { palette[background_colour_], palette[text_colour_] };
const int shift = (output_column_ - first_pixel_column_) % 6;
int byte_column = (output_column_ - first_pixel_column_) / 6;
int pattern = pattern_buffer_[byte_column] << shift;
int pixels_left = pixels_end - output_column_;
int length = std::min(pixels_left, 6 - shift);
while(true) {
pixels_left -= length;
while(length--) {
*pixel_target_ = colours[(pattern >> 7)&0x01];
pixel_target_++;
pattern <<= 1;
}
if(!pixels_left) break;
length = std::min(6, pixels_left);
byte_column++;
pattern = pattern_buffer_[byte_column];
}
output_column_ = pixels_end;
} break;
case LineMode::Character: {
// If this is the start of the visible area, seed sprite shifter positions.
SpriteSet &sprite_set = sprite_sets_[active_sprite_set_ ^ 1];
if(line_mode_ == LineMode::Character && output_column_ == first_pixel_column_) {
int c = sprite_set.active_sprite_slot;
while(c--) {
SpriteSet::ActiveSprite &sprite = sprite_set.active_sprites[c];
sprite.shift_position = -sprite.info[1];
if(sprite.info[3] & 0x80) {
sprite.shift_position += 32;
if(sprite.shift_position > 0 && !sprites_magnified_)
sprite.shift_position *= 2;
}
}
}
// Paint the background tiles.
const int shift = (output_column_ - first_pixel_column_) & 7;
int byte_column = (output_column_ - first_pixel_column_) >> 3;
const int pixels_left = pixels_end - output_column_;
int length = std::min(pixels_left, 8 - shift);
int pattern = pattern_buffer_[byte_column] << shift;
uint8_t colour = colour_buffer_[byte_column];
uint32_t colours[2] = {
palette[(colour & 15) ? (colour & 15) : background_colour_],
palette[(colour >> 4) ? (colour >> 4) : background_colour_]
};
int background_pixels_left = pixels_left;
while(true) {
background_pixels_left -= length;
while(length--) {
*pixel_target_ = colours[(pattern >> 7)&0x01];
pixel_target_++;
pattern <<= 1;
}
if(!background_pixels_left) break;
length = std::min(8, background_pixels_left);
byte_column++;
pattern = pattern_buffer_[byte_column];
colour = colour_buffer_[byte_column];
colours[0] = palette[(colour & 15) ? (colour & 15) : background_colour_];
colours[1] = palette[(colour >> 4) ? (colour >> 4) : background_colour_];
}
// Paint sprites and check for collisions.
if(sprite_set.active_sprite_slot) {
int sprite_pixels_left = pixels_left;
const int shift_advance = sprites_magnified_ ? 1 : 2;
const uint32_t sprite_colour_selection_masks[2] = {0x00000000, 0xffffffff};
const int colour_masks[16] = {0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1};
while(sprite_pixels_left--) {
uint32_t sprite_colour = pixel_base_[output_column_ - first_pixel_column_];
int sprite_mask = 0;
int c = sprite_set.active_sprite_slot;
while(c--) {
SpriteSet::ActiveSprite &sprite = sprite_set.active_sprites[c];
if(sprite.shift_position < 0) {
sprite.shift_position++;
continue;
} else if(sprite.shift_position < 32) {
int mask = sprite.image[sprite.shift_position >> 4] << ((sprite.shift_position&15) >> 1);
mask = (mask >> 7) & 1;
status_ |= (mask & sprite_mask) << StatusSpriteCollisionShift;
sprite_mask |= mask;
sprite.shift_position += shift_advance;
mask &= colour_masks[sprite.info[3]&15];
sprite_colour = (sprite_colour & sprite_colour_selection_masks[mask^1]) | (palette[sprite.info[3]&15] & sprite_colour_selection_masks[mask]);
}
}
pixel_base_[output_column_ - first_pixel_column_] = sprite_colour;
output_column_++;
}
}
output_column_ = pixels_end;
} break;
}
if(output_column_ == first_right_border_column_) {
crt_->output_data(static_cast<unsigned int>(first_right_border_column_ - first_pixel_column_) * 4, 4);
pixel_target_ = nullptr;
}
}
}
// --------------------
// Output right border.
// --------------------
if(output_column_ >= first_right_border_column_) {
output_border(column_ - output_column_);
output_column_ = column_;
}
} else if(row_ >= first_vsync_line_ && row_ < first_vsync_line_+3) {
// Vertical sync.
if(column_ == 342) {
crt_->output_sync(342 * 4);
}
} else {
// Blank.
if(!output_column_ && column_ >= 26) {
crt_->output_sync(13 * 4);
crt_->output_default_colour_burst(13 * 4);
output_column_ = 26;
}
if(output_column_ >= 26) {
output_border(column_ - output_column_);
output_column_ = column_;
}
}
// -----------------
// End video stream.
// -----------------
// -----------------------------------
// Prepare for next line, potentially.
// -----------------------------------
if(column_ == 342) {
access_pointer_ = column_ = output_column_ = 0;
row_ = (row_ + 1) % frame_lines_;
if(row_ == 192) status_ |= StatusInterrupt;
screen_mode_ = next_screen_mode_;
blank_screen_ = next_blank_screen_;
switch(screen_mode_) {
case 2:
line_mode_ = LineMode::Text;
first_pixel_column_ = 69;
first_right_border_column_ = 309;
break;
default:
line_mode_ = LineMode::Character;
first_pixel_column_ = 63;
first_right_border_column_ = 319;
break;
}
if(blank_screen_ || (row_ >= 192 && row_ != frame_lines_-1)) line_mode_ = LineMode::Refresh;
}
}
}
void TMS9918Base::output_border(int cycles) {
pixel_target_ = reinterpret_cast<uint32_t *>(crt_->allocate_write_area(1));
if(pixel_target_) *pixel_target_ = palette[background_colour_];
crt_->output_level(static_cast<unsigned int>(cycles) * 4);
}
void TMS9918::set_register(int address, uint8_t value) {
// Writes to address 0 are writes to the video RAM. Store
// the value and return.
if(!(address & 1)) {
write_phase_ = false;
// Enqueue the write to occur at the next available slot.
read_ahead_buffer_ = value;
queued_access_ = MemoryAccess::Write;
return;
}
// Writes to address 1 are performed in pairs; if this is the
// low byte of a value, store it and wait for the high byte.
if(!write_phase_) {
low_write_ = value;
write_phase_ = true;
return;
}
write_phase_ = false;
if(value & 0x80) {
// This is a write to a register.
switch(value & 7) {
case 0:
next_screen_mode_ = (next_screen_mode_ & 6) | ((low_write_ & 2) >> 1);
break;
case 1:
next_blank_screen_ = !(low_write_ & 0x40);
generate_interrupts_ = !!(low_write_ & 0x20);
next_screen_mode_ = (next_screen_mode_ & 1) | ((low_write_ & 0x18) >> 3);
sprites_16x16_ = !!(low_write_ & 0x02);
sprites_magnified_ = !!(low_write_ & 0x01);
sprite_height_ = 8;
if(sprites_16x16_) sprite_height_ <<= 1;
if(sprites_magnified_) sprite_height_ <<= 1;
break;
case 2:
pattern_name_address_ = static_cast<uint16_t>((low_write_ & 0xf) << 10);
break;
case 3:
colour_table_address_ = static_cast<uint16_t>(low_write_ << 6);
break;
case 4:
pattern_generator_table_address_ = static_cast<uint16_t>((low_write_ & 0x07) << 11);
break;
case 5:
sprite_attribute_table_address_ = static_cast<uint16_t>((low_write_ & 0x7f) << 7);
break;
case 6:
sprite_generator_table_address_ = static_cast<uint16_t>((low_write_ & 0x07) << 11);
break;
case 7:
text_colour_ = low_write_ >> 4;
background_colour_ = low_write_ & 0xf;
break;
}
} else {
// This is a write to the RAM pointer.
ram_pointer_ = static_cast<uint16_t>(low_write_ | (value << 8));
if(!(value & 0x40)) {
// Officially a 'read' set, so perform lookahead.
queued_access_ = MemoryAccess::Read;
}
}
}
uint8_t TMS9918::get_register(int address) {
write_phase_ = false;
// Reads from address 0 read video RAM, via the read-ahead buffer.
if(!(address & 1)) {
// Enqueue the write to occur at the next available slot.
uint8_t result = read_ahead_buffer_;
queued_access_ = MemoryAccess::Read;
return result;
}
// Reads from address 1 get the status register.
uint8_t result = status_;
status_ &= ~(StatusInterrupt | StatusFifthSprite | StatusSpriteCollision);
return result;
}
HalfCycles TMS9918::get_time_until_interrupt() {
if(!generate_interrupts_) return HalfCycles(-1);
if(get_interrupt_line()) return HalfCycles(0);
const int half_cycles_per_frame = frame_lines_ * 228 * 2;
int half_cycles_remaining = (192 * 228 * 2 + half_cycles_per_frame - half_cycles_into_frame_.as_int()) % half_cycles_per_frame;
return HalfCycles(half_cycles_remaining ? half_cycles_remaining : half_cycles_per_frame);
}
bool TMS9918::get_interrupt_line() {
return (status_ & StatusInterrupt) && generate_interrupts_;
}