1
0
mirror of https://github.com/TomHarte/CLK.git synced 2025-01-24 17:32:55 +00:00
2024-04-10 21:53:38 -04:00

501 lines
15 KiB
C++

//
// Video.hpp
// Clock Signal
//
// Created by Thomas Harte on 20/03/2024.
// Copyright © 2024 Thomas Harte. All rights reserved.
//
#pragma once
#include "../../../Outputs/Log.hpp"
#include "../../../Outputs/CRT/CRT.hpp"
#include <array>
#include <cstdint>
#include <cstring>
namespace Archimedes {
template <typename InterruptObserverT, typename ClockRateObserverT, typename SoundT>
struct Video {
Video(InterruptObserverT &interrupt_observer, ClockRateObserverT &clock_rate_observer, SoundT &sound, const uint8_t *ram) :
interrupt_observer_(interrupt_observer),
clock_rate_observer_(clock_rate_observer),
sound_(sound),
ram_(ram),
crt_(Outputs::Display::InputDataType::Red4Green4Blue4) {
set_clock_divider(3);
crt_.set_visible_area(Outputs::Display::Rect(0.06f, 0.07f, 0.9f, 0.9f));
crt_.set_display_type(Outputs::Display::DisplayType::RGB);
}
static constexpr uint16_t colour(uint32_t value) {
uint8_t packed[2]{};
packed[0] = value & 0xf;
packed[1] = (value & 0xf0) | ((value & 0xf00) >> 8);
#if TARGET_RT_BIG_ENDIAN
return static_cast<uint16_t>(packed[1] | (packed[0] << 8));
#else
return static_cast<uint16_t>(packed[0] | (packed[1] << 8));
#endif
};
static constexpr uint16_t high_spread[] = {
colour(0b0000'0000'0000), colour(0b0000'0000'1000), colour(0b0000'0100'0000), colour(0b0000'0100'1000),
colour(0b0000'1000'0000), colour(0b0000'1000'1000), colour(0b0000'1100'0000), colour(0b0000'1100'1000),
colour(0b1000'0000'0000), colour(0b1000'0000'1000), colour(0b1000'0100'0000), colour(0b1000'0100'1000),
colour(0b1000'1000'0000), colour(0b1000'1000'1000), colour(0b1000'1100'0000), colour(0b1000'1100'1000),
};
void write(uint32_t value) {
const auto target = (value >> 24) & 0xfc;
const auto timing_value = [](uint32_t value) -> uint32_t {
return (value >> 14) & 0x3ff;
};
switch(target) {
case 0x00: case 0x04: case 0x08: case 0x0c:
case 0x10: case 0x14: case 0x18: case 0x1c:
case 0x20: case 0x24: case 0x28: case 0x2c:
case 0x30: case 0x34: case 0x38: case 0x3c:
colours_[target >> 2] = colour(value);
break;
case 0x40: border_colour_ = colour(value); break;
case 0x44: case 0x48: case 0x4c:
cursor_colours_[(target - 0x40) >> 2] = colour(value);
break;
case 0x80: horizontal_timing_.period = timing_value(value); break;
case 0x84: horizontal_timing_.sync_width = timing_value(value); break;
case 0x88: horizontal_timing_.border_start = timing_value(value); break;
case 0x8c: horizontal_timing_.display_start = timing_value(value); break;
case 0x90: horizontal_timing_.display_end = timing_value(value); break;
case 0x94: horizontal_timing_.border_end = timing_value(value); break;
case 0x98:
horizontal_timing_.cursor_start = (value >> 13) & 0x7ff;
cursor_shift_ = (value >> 11) & 3;
break;
case 0x9c:
logger.error().append("TODO: Video horizontal interlace: %d", (value >> 14) & 0x3ff);
break;
case 0xa0: vertical_timing_.period = timing_value(value); break;
case 0xa4: vertical_timing_.sync_width = timing_value(value); break;
case 0xa8: vertical_timing_.border_start = timing_value(value); break;
case 0xac: vertical_timing_.display_start = timing_value(value); break;
case 0xb0: vertical_timing_.display_end = timing_value(value); break;
case 0xb4: vertical_timing_.border_end = timing_value(value); break;
case 0xb8: vertical_timing_.cursor_start = timing_value(value); break;
case 0xbc: vertical_timing_.cursor_end = timing_value(value); break;
case 0xe0:
logger.error().append("TODO: video control: %08x", value);
// Set pixel rate. This is the value that a 24Mhz clock should be divided
// by to get half the pixel rate.
switch(value & 0b11) {
case 0b00: set_clock_divider(6); break; // i.e. pixel clock = 8Mhz.
case 0b01: set_clock_divider(4); break; // 12Mhz.
case 0b10: set_clock_divider(3); break; // 16Mhz.
case 0b11: set_clock_divider(2); break; // 24Mhz.
}
// Set colour depth.
colour_depth_ = Depth((value >> 2) & 0b11);
break;
//
// Sound parameters.
//
case 0x60: case 0x64: case 0x68: case 0x6c:
case 0x70: case 0x74: case 0x78: case 0x7c: {
const uint8_t channel = ((value >> 26) + 7) & 7;
sound_.set_stereo_image(channel, value & 7);
} break;
case 0xc0:
sound_.set_frequency(value & 0x7f);
break;
default:
logger.error().append("TODO: unrecognised VIDC write of %08x", value);
break;
}
}
void tick() {
// Pick new horizontal state, possibly rolling over into the vertical.
horizontal_state_.increment_position(horizontal_timing_);
if(horizontal_state_.did_restart()) {
const auto old_phase = vertical_state_.phase();
vertical_state_.increment_position(vertical_timing_);
pixel_count_ = 0;
const auto phase = vertical_state_.phase();
if(phase != old_phase) {
// I don't have good information on this; first guess: copy frame and
// cursor start addresses into counters at the start of the first vertical
// display line.
if(phase == Phase::Display) {
address_ = frame_start_;
cursor_address_ = cursor_start_;
}
if(old_phase == Phase::Display) {
entered_flyback_ = true;
interrupt_observer_.update_interrupts();
}
}
// Determine which next 8 bytes will be the cursor image for this line.
// Pragmatically, updating cursor_address_ once per line avoids probable
// errors in getting it to appear appropriately over both pixels and border.
if(vertical_state_.cursor_active) {
uint8_t *cursor_pixel = cursor_image_.data();
for(int byte = 0; byte < 8; byte ++) {
cursor_pixel[0] = (ram_[cursor_address_] >> 0) & 3;
cursor_pixel[1] = (ram_[cursor_address_] >> 2) & 3;
cursor_pixel[2] = (ram_[cursor_address_] >> 4) & 3;
cursor_pixel[3] = (ram_[cursor_address_] >> 6) & 3;
cursor_pixel += 4;
++cursor_address_;
}
}
cursor_pixel_ = 32;
}
// Accumulate total phase.
++time_in_phase_;
// Determine current output phase.
Phase new_phase;
switch(vertical_state_.phase()) {
case Phase::Sync: new_phase = Phase::Sync; break;
case Phase::Blank: new_phase = Phase::Blank; break;
case Phase::Border:
new_phase = horizontal_state_.phase() == Phase::Display ? Phase::Border : horizontal_state_.phase();
break;
case Phase::Display:
new_phase = horizontal_state_.phase();
break;
}
const auto flush_pixels = [&]() {
const auto duration = static_cast<int>(time_in_phase_);
crt_.output_data(duration, static_cast<size_t>(time_in_phase_) * 2);
time_in_phase_ = 0;
pixels_ = nullptr;
};
// Possibly output something.
if(new_phase != phase_) {
if(time_in_phase_) {
const auto duration = static_cast<int>(time_in_phase_);
switch(phase_) {
case Phase::Sync: crt_.output_sync(duration); break;
case Phase::Blank: crt_.output_blank(duration); break;
case Phase::Display: flush_pixels(); break;
case Phase::Border: crt_.output_level<uint16_t>(duration, border_colour_); break;
}
time_in_phase_ = 0;
}
phase_ = new_phase;
}
// Update cursor pixel counter if applicable; this might mean triggering it
// and it might just mean advancing it if it has already been triggered.
if(vertical_state_.cursor_active) {
const auto pixel_position = horizontal_state_.position << 1;
if(pixel_position <= horizontal_timing_.cursor_start && (pixel_position + 2) > horizontal_timing_.cursor_start) {
cursor_pixel_ = int(horizontal_timing_.cursor_start) - int(pixel_position);
}
}
// Grab some more pixels if appropriate.
if(vertical_state_.display_active() && horizontal_state_.display_active()) {
const auto next_byte = [&]() -> uint8_t {
const auto next = ram_[address_];
++address_;
// `buffer_end_` is the final address that a 16-byte block will be fetched from;
// the +16 here papers over the fact that I'm not accurately implementing DMA.
if(address_ == buffer_end_ + 16) {
address_ = buffer_start_;
}
return next;
};
switch(colour_depth_) {
case Depth::EightBPP:
pixel_data_[0] = next_byte();
pixel_data_[1] = next_byte();
break;
case Depth::FourBPP:
pixel_data_[0] = next_byte();
break;
case Depth::TwoBPP:
if(!(pixel_count_&1)) {
pixel_data_[0] = next_byte();
}
break;
case Depth::OneBPP:
if(!(pixel_count_&3)) {
pixel_data_[0] = next_byte();
}
break;
}
++pixel_count_;
}
if(phase_ == Phase::Display) {
if(pixels_ && time_in_phase_ == PixelBufferSize/2) {
flush_pixels();
}
if(!pixels_) {
if(time_in_phase_) {
flush_pixels();
}
pixels_ = reinterpret_cast<uint16_t *>(crt_.begin_data(PixelBufferSize));
}
if(pixels_) {
// Each tick in here is two ticks of the pixel clock, so:
//
// 8bpp mode: output two bytes;
// 4bpp mode: output one byte;
// 2bpp mode: output one byte every second tick;
// 1bpp mode: output one byte every fourth tick.
switch(colour_depth_) {
case Depth::EightBPP:
pixels_[0] = (colours_[pixel_data_[0] & 0xf] & colour(0b0111'0011'0111)) | high_spread[pixel_data_[0] >> 4];
pixels_[1] = (colours_[pixel_data_[1] & 0xf] & colour(0b0111'0011'0111)) | high_spread[pixel_data_[1] >> 4];
break;
case Depth::FourBPP:
pixels_[0] = colours_[pixel_data_[0] & 0xf];
pixels_[1] = colours_[pixel_data_[0] >> 4];
break;
case Depth::TwoBPP:
pixels_[0] = colours_[pixel_data_[0] & 3];
pixels_[1] = colours_[(pixel_data_[0] >> 2) & 3];
pixel_data_[0] >>= 4;
break;
case Depth::OneBPP:
pixels_[0] = colours_[pixel_data_[0] & 1];
pixels_[1] = colours_[(pixel_data_[0] >> 1) & 1];
pixel_data_[0] >>= 2;
break;
}
// Overlay cursor if applicable.
// TODO: pull this so far out that the cursor can display over the border, too.
if(cursor_pixel_ < 32) {
if(cursor_pixel_ >= 0) {
const auto pixel = cursor_image_[static_cast<size_t>(cursor_pixel_)];
if(pixel) {
pixels_[0] = cursor_colours_[pixel];
}
}
if(cursor_pixel_ < 31) {
const auto pixel = cursor_image_[static_cast<size_t>(cursor_pixel_ + 1)];
if(pixel) {
pixels_[1] = cursor_colours_[pixel];
}
}
}
pixels_ += 2;
}
}
// Advance cursor position.
if(cursor_pixel_ < 32) cursor_pixel_ += 2;
}
/// @returns @c true if a vertical retrace interrupt has been signalled since the last call to @c interrupt(); @c false otherwise.
bool interrupt() {
// Guess: edge triggered?
const bool interrupt = entered_flyback_;
entered_flyback_ = false;
return interrupt;
}
bool flyback_active() const {
return vertical_state_.phase() != Phase::Display;
}
void set_frame_start(uint32_t address) { frame_start_ = address; }
void set_buffer_start(uint32_t address) { buffer_start_ = address; }
void set_buffer_end(uint32_t address) { buffer_end_ = address; }
void set_cursor_start(uint32_t address) { cursor_start_ = address; }
Outputs::CRT::CRT &crt() { return crt_; }
const Outputs::CRT::CRT &crt() const { return crt_; }
int clock_divider() const {
return static_cast<int>(clock_divider_);
}
private:
Log::Logger<Log::Source::ARMIOC> logger;
InterruptObserverT &interrupt_observer_;
ClockRateObserverT &clock_rate_observer_;
SoundT &sound_;
// In the current version of this code, video DMA occurrs costlessly,
// being deferred to the component itself.
const uint8_t *ram_ = nullptr;
Outputs::CRT::CRT crt_;
// Horizontal and vertical timing.
struct Timing {
uint32_t period = 0;
uint32_t sync_width = 0;
uint32_t border_start = 0;
uint32_t border_end = 0;
uint32_t display_start = 0;
uint32_t display_end = 0;
uint32_t cursor_start = 0;
uint32_t cursor_end = 0;
};
uint32_t cursor_shift_ = 0;
Timing horizontal_timing_, vertical_timing_;
// Current video state.
enum class Phase {
Sync, Blank, Border, Display,
};
struct State {
uint32_t position = 0;
void increment_position(const Timing &timing) {
++position;
if(position == 1024) position = 0;
if(position == timing.period) {
state = DidRestart;
position = 0;
}
if(position == timing.sync_width) state |= SyncEnded;
if(position == timing.display_start) state |= DisplayStarted;
if(position == timing.display_end) state |= DisplayEnded;
if(position == timing.border_start) state |= BorderStarted;
if(position == timing.border_end) state |= BorderEnded;
cursor_active |= position == timing.cursor_start;
cursor_active &= position != timing.cursor_end;
}
static constexpr uint8_t SyncEnded = 0x1;
static constexpr uint8_t BorderStarted = 0x2;
static constexpr uint8_t BorderEnded = 0x4;
static constexpr uint8_t DisplayStarted = 0x8;
static constexpr uint8_t DisplayEnded = 0x10;
static constexpr uint8_t DidRestart = 0x20;
uint8_t state = 0;
bool cursor_active = false;
bool did_restart() {
const bool result = state & DidRestart;
state &= ~DidRestart;
return result;
}
bool display_active() const {
return (state & DisplayStarted) && !(state & DisplayEnded);
}
Phase phase() const {
// TODO: turn the following logic into a 32-entry lookup table.
if(!(state & SyncEnded)) {
return Phase::Sync;
}
if(!(state & BorderStarted) || (state & BorderEnded)) {
return Phase::Blank;
}
if(!(state & DisplayStarted) || (state & DisplayEnded)) {
return Phase::Border;
}
return Phase::Display;
}
};
State horizontal_state_, vertical_state_;
Phase phase_ = Phase::Sync;
uint32_t time_in_phase_ = 0;
uint32_t pixel_count_ = 0;
uint16_t *pixels_ = nullptr;
// It is elsewhere assumed that this size is a multiple of 8.
static constexpr size_t PixelBufferSize = 320;
// Programmer-set addresses.
uint32_t buffer_start_ = 0;
uint32_t buffer_end_ = 0;
uint32_t frame_start_ = 0;
uint32_t cursor_start_ = 0;
// Ephemeral address state.
uint32_t address_ = 0;
// Horizontal cursor output state.
uint32_t cursor_address_ = 0;
int cursor_pixel_ = 0;
std::array<uint8_t, 32> cursor_image_;
// Ephemeral graphics data.
uint8_t pixel_data_[2]{};
// Colour palette, converted to internal format.
uint16_t border_colour_;
std::array<uint16_t, 16> colours_{};
std::array<uint16_t, 4> cursor_colours_{};
// An interrupt flag; more closely related to the interface by which
// my implementation of the IOC picks up an interrupt request than
// to hardware.
bool entered_flyback_ = false;
// The divider that would need to be applied to a 24Mhz clock to
// get half the current pixel clock; counting is in units of half
// the pixel clock because that's the fidelity at which the programmer
// places horizontal events — display start, end, sync period, etc.
uint32_t clock_divider_ = 0;
enum class Depth {
OneBPP = 0b00,
TwoBPP = 0b01,
FourBPP = 0b10,
EightBPP = 0b11,
} colour_depth_;
void set_clock_divider(uint32_t divider) {
if(divider == clock_divider_) {
return;
}
clock_divider_ = divider;
const auto cycles_per_line = static_cast<int>(24'000'000 / (divider * 312 * 50));
crt_.set_new_timing(
cycles_per_line,
312, /* Height of display. */
Outputs::CRT::PAL::ColourSpace,
Outputs::CRT::PAL::ColourCycleNumerator,
Outputs::CRT::PAL::ColourCycleDenominator,
Outputs::CRT::PAL::VerticalSyncLength,
Outputs::CRT::PAL::AlternatesPhase);
clock_rate_observer_.update_clock_rates();
}
};
}