1
0
mirror of https://github.com/TomHarte/CLK.git synced 2024-11-26 08:49:37 +00:00
CLK/Machines/Acorn/Electron/Video.cpp
2024-09-06 21:47:13 -04:00

277 lines
8.1 KiB
C++

//
// Video.cpp
// Clock Signal
//
// Created by Thomas Harte on 10/12/2016.
// Copyright 2016 Thomas Harte. All rights reserved.
//
#include "Video.hpp"
#include <cstring>
using namespace Electron;
// MARK: - Lifecycle
VideoOutput::VideoOutput(const uint8_t *memory) :
ram_(memory),
crt_(128,
1,
Outputs::Display::Type::PAL50,
Outputs::Display::InputDataType::Red1Green1Blue1) {
memset(palette_, 0xf, sizeof(palette_));
// TODO: as implied below, I've introduced a clock's latency into the graphics pipeline somehow. Investigate.
// crt_.set_visible_area(crt_.get_rect_for_area(first_graphics_line - 1, 256, (first_graphics_cycle+1) * crt_cycles_multiplier, 80 * crt_cycles_multiplier, 4.0f / 3.0f));
}
void VideoOutput::set_scan_target(Outputs::Display::ScanTarget *scan_target) {
crt_.set_scan_target(scan_target);
}
Outputs::Display::ScanStatus VideoOutput::get_scaled_scan_status() const {
return crt_.get_scaled_scan_status();
}
void VideoOutput::set_display_type(Outputs::Display::DisplayType display_type) {
crt_.set_display_type(display_type);
}
Outputs::Display::DisplayType VideoOutput::get_display_type() const {
return crt_.get_display_type();
}
uint8_t VideoOutput::run_for(const Cycles cycles) {
uint8_t interrupts{};
int number_of_cycles = cycles.as<int>();
while(number_of_cycles--) {
// Horizontal and vertical counter updates.
const bool is_v_end = v_count == v_total();
h_count += 8;
if(h_count == h_total) {
h_count = 0;
++v_count;
if(is_v_end) {
v_count = 0;
field = !field;
}
}
// Test for interrupts.
if(v_count == v_rtc && ((!field && !h_count) || (field && h_count == h_half))) {
interrupts |= static_cast<uint8_t>(Interrupt::RealTimeClock);
}
if(h_count == hsync_start && ((v_count == v_disp_gph && !mode_text) or (v_count == v_disp_txt && mode_text))) {
interrupts |= static_cast<uint8_t>(Interrupt::DisplayEnd);
}
// Update syncs.
if(!field) {
if(!h_count && v_count == vsync_start) {
vsync_int = true;
} else if(h_count == h_half && v_count == vsync_end) {
vsync_int = false;
}
} else {
if(h_count == h_half && v_count == vsync_start) {
vsync_int = true;
} else if(!h_count && v_count == vsync_end + 1) {
vsync_int = false;
}
}
if(h_count == hsync_start) {
hsync_int = true;
} else if(h_count == hsync_end) {
hsync_int = false;
}
// Update character row on the trailing edge of hsync.
if(h_count == hsync_end) {
if(is_v_end) {
char_row = 0;
} else {
char_row = last_line() ? 0 : char_row + 1;
}
}
// Disable the top bit of the char_row counter outside of text mode.
if(!mode_text) {
char_row &= 7;
}
// Latch video address at frame start.
if(h_count == h_reset_addr && is_v_end) {
row_addr = byte_addr = screen_base;
}
// Copy byte_addr back into row_addr if a new character row has begun.
if(hsync_int) {
if(last_line()) {
row_addr = byte_addr;
} else {
byte_addr = row_addr;
}
}
// Determine current output item.
OutputStage stage;
int screen_pitch = screen_pitch_;
if(vsync_int || hsync_int) {
stage = OutputStage::Sync;
} else if(in_blank()) {
stage = OutputStage::Blank;
} else {
stage = OutputStage::Pixels;
screen_pitch = (mode_40 ? 320 : 640) / static_cast<int>(mode_bpp);
}
if(stage != output_ || screen_pitch != screen_pitch_) {
switch(output_) {
case OutputStage::Sync: crt_.output_sync(output_length_); break;
case OutputStage::Blank: crt_.output_blank(output_length_); break;
case OutputStage::Pixels:
if(current_output_target_) {
crt_.output_data(
output_length_,
static_cast<size_t>(current_output_target_ - initial_output_target_)
);
} else {
crt_.output_data(output_length_);
}
break;
}
output_length_ = 0;
output_ = stage;
screen_pitch_ = screen_pitch;
if(stage == OutputStage::Pixels) {
initial_output_target_ = current_output_target_ = crt_.begin_data(static_cast<size_t>(screen_pitch_));
}
}
++output_length_;
if(output_ == OutputStage::Pixels && (!mode_40 || h_count & 8) && current_output_target_) {
const uint8_t data = ram_[byte_addr | char_row];
switch(mode_bpp) {
case Bpp::One:
current_output_target_[0] = palette1bpp_[(data >> 7) & 1];
current_output_target_[1] = palette1bpp_[(data >> 6) & 1];
current_output_target_[2] = palette1bpp_[(data >> 5) & 1];
current_output_target_[3] = palette1bpp_[(data >> 4) & 1];
current_output_target_[4] = palette1bpp_[(data >> 3) & 1];
current_output_target_[5] = palette1bpp_[(data >> 2) & 1];
current_output_target_[6] = palette1bpp_[(data >> 1) & 1];
current_output_target_[7] = palette1bpp_[(data >> 0) & 1];
current_output_target_ += 8;
break;
case Bpp::Two:
current_output_target_[0] = palette2bpp_[((data >> 6) & 2) | ((data >> 3) & 1)];
current_output_target_[1] = palette2bpp_[((data >> 5) & 2) | ((data >> 2) & 1)];
current_output_target_[2] = palette2bpp_[((data >> 4) & 2) | ((data >> 1) & 1)];
current_output_target_[3] = palette2bpp_[((data >> 3) & 2) | ((data >> 0) & 1)];
current_output_target_ += 4;
break;
case Bpp::Four:
current_output_target_[0] = palette4bpp_[((data >> 4) & 8) | ((data >> 3) & 4) | ((data >> 2) & 2) | ((data >> 1) & 1)];
current_output_target_[1] = palette4bpp_[((data >> 3) & 8) | ((data >> 2) & 4) | ((data >> 1) & 2) | ((data >> 0) & 1)];
current_output_target_ += 2;
break;
}
}
// Increment the byte address across the line.
// (slghtly pained logic here because the input clock is still at the pixel rate, not the byte rate)
if(h_count < h_active) {
if(
(!mode_40 && !(h_count & 0x7)) ||
(mode_40 && ((h_count & 0xf) == 0x8))
) {
byte_addr += 8;
if(!(byte_addr & 0b0111'1000'0000'0000)) {
byte_addr = mode_base | (byte_addr & 0x0000'0111'1111'1111);
}
}
}
}
return interrupts;
}
// MARK: - Register hub
void VideoOutput::write(int address, uint8_t value) {
address &= 0xf;
switch(address) {
case 0x02:
screen_base =
(screen_base & 0b0111'1110'0000'0000) |
((value << 1) & 0b0000'0001'1100'0000);
break;
case 0x03:
screen_base =
((value << 9) & 0b0111'1110'0000'0000) |
(screen_base & 0b0000'0001'1100'0000);
break;
case 0x07: {
uint8_t mode = (value >> 3)&7;
mode_40 = mode >= 4;
mode_text = mode == 3 || mode == 6;
switch(mode) {
case 0:
case 1:
case 2: mode_base = 0x3000; break;
case 3: mode_base = 0x4000; break;
case 6: mode_base = 0x6000; break;
default: mode_base = 0x5800; break;
}
switch(mode) {
default: mode_bpp = Bpp::One; break;
case 1:
case 5: mode_bpp = Bpp::Two; break;
case 2: mode_bpp = Bpp::Four; break;
}
} break;
case 0x08: case 0x09: case 0x0a: case 0x0b:
case 0x0c: case 0x0d: case 0x0e: case 0x0f: {
palette_[address - 8] = ~value;
if(address <= 0x09) {
palette1bpp_[0] = palette_entry<1, 0, 1, 4, 0, 4>();
palette1bpp_[1] = palette_entry<1, 2, 0, 6, 0, 2>();
palette2bpp_[0] = palette_entry<1, 0, 1, 4, 0, 4>();
palette2bpp_[1] = palette_entry<1, 1, 1, 5, 0, 5>();
palette2bpp_[2] = palette_entry<1, 2, 0, 2, 0, 6>();
palette2bpp_[3] = palette_entry<1, 3, 0, 3, 0, 7>();
}
palette4bpp_[0] = palette_entry<1, 0, 1, 4, 0, 4>();
palette4bpp_[2] = palette_entry<1, 1, 1, 5, 0, 5>();
palette4bpp_[8] = palette_entry<1, 2, 0, 2, 0, 6>();
palette4bpp_[10] = palette_entry<1, 3, 0, 3, 0, 7>();
palette4bpp_[4] = palette_entry<3, 0, 3, 4, 2, 4>();
palette4bpp_[6] = palette_entry<3, 1, 3, 5, 2, 5>();
palette4bpp_[12] = palette_entry<3, 2, 2, 2, 2, 6>();
palette4bpp_[14] = palette_entry<3, 3, 2, 3, 2, 7>();
palette4bpp_[5] = palette_entry<5, 0, 5, 4, 4, 4>();
palette4bpp_[7] = palette_entry<5, 1, 5, 5, 4, 5>();
palette4bpp_[13] = palette_entry<5, 2, 4, 2, 4, 6>();
palette4bpp_[15] = palette_entry<5, 3, 4, 3, 4, 7>();
palette4bpp_[1] = palette_entry<7, 0, 7, 4, 6, 4>();
palette4bpp_[3] = palette_entry<7, 1, 7, 5, 6, 5>();
palette4bpp_[9] = palette_entry<7, 2, 6, 2, 6, 6>();
palette4bpp_[11] = palette_entry<7, 3, 6, 3, 6, 7>();
} break;
}
}