1
0
mirror of https://github.com/TomHarte/CLK.git synced 2024-07-17 13:29:02 +00:00
CLK/Storage/Disk/Encodings/AppleGCR/SegmentParser.cpp
Thomas Harte 555c2a4377 Makes a first sweep at converting the storage underlying PCMSegment to vector<bool>.
This is to remove another pain point, in preparation for the work immediately forthcoming but also work as-yet unknown.
2018-07-01 12:05:41 -04:00

170 lines
5.2 KiB
C++

//
// SegmentParser.cpp
// Clock Signal
//
// Created by Thomas Harte on 04/05/2018.
// Copyright 2018 Thomas Harte. All rights reserved.
//
#include "SegmentParser.hpp"
#include "Encoder.hpp"
#include <array>
namespace {
const uint8_t six_and_two_unmapping[] = {
0x00, 0x01, 0xff, 0xff,
0x02, 0x03, 0xff, 0x04, 0x05, 0x06, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0x07, 0x08, 0xff, 0xff,
0xff, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0xff, 0xff,
0x0e, 0x0f, 0x10, 0x11, 0x12, 0x13, 0xff, 0x14,
0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0x1b, 0xff, 0x1c, 0x1d, 0x1e, 0xff, 0xff,
0xff, 0x1f, 0xff, 0xff, 0x20, 0x21, 0xff, 0x22,
0x23, 0x24, 0x25, 0x26, 0x27, 0x28, 0xff, 0xff,
0xff, 0xff, 0xff, 0x29, 0x2a, 0x2b, 0xff, 0x2c,
0x2d, 0x2e, 0x2f, 0x30, 0x31, 0x32, 0xff, 0xff,
0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0xff, 0x39,
0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f, 0xff, 0xff
};
}
using namespace Storage::Encodings::AppleGCR;
std::map<std::size_t, Sector> Storage::Encodings::AppleGCR::sectors_from_segment(const Disk::PCMSegment &&segment) {
std::map<std::size_t, Sector> result;
uint_fast8_t shift_register = 0;
const std::size_t scanning_sentinel = std::numeric_limits<std::size_t>::max();
std::unique_ptr<Sector> new_sector;
std::size_t sector_location = 0;
std::size_t pointer = scanning_sentinel;
std::array<uint_fast8_t, 8> header{{0, 0, 0, 0, 0, 0, 0, 0}};
std::array<uint_fast8_t, 3> scanner{{0, 0, 0}};
// Scan the track 1 and 1/8th times; that's long enough to make sure that any sector which straddles the
// end of the track is caught. Since they're put into a map, it doesn't matter if they're caught twice.
const size_t extended_length = segment.data.size() + (segment.data.size() >> 3);
for(size_t bit = 0; bit < extended_length; ++bit) {
shift_register = static_cast<uint_fast8_t>((shift_register << 1) | (segment.data[bit % segment.data.size()] ? 1 : 0));
// Apple GCR parsing: bytes always have the top bit set.
if(!(shift_register&0x80)) continue;
// Grab the byte.
const uint_fast8_t value = shift_register;
shift_register = 0;
scanner[0] = scanner[1];
scanner[1] = scanner[2];
scanner[2] = value;
if(pointer == scanning_sentinel) {
if(
scanner[0] == header_prologue[0] &&
scanner[1] == header_prologue[1] &&
(
scanner[2] == header_prologue[2] ||
scanner[2] == data_prologue[2]
)) {
pointer = 0;
// If this is the start of a data section, and at least
// one header has been witnessed, start a sector.
if(scanner[2] == data_prologue[2]) {
new_sector.reset(new Sector);
new_sector->data.reserve(412);
} else {
sector_location = static_cast<std::size_t>(bit % segment.data.size());
}
}
} else {
if(new_sector) {
new_sector->data.push_back(value);
// If this is potentially a complete sector, check it out.
if(new_sector->data.size() == 343) {
// TODO: allow for 13-sector form.
std::unique_ptr<Sector> sector = std::move(new_sector);
new_sector.reset();
pointer = scanning_sentinel;
// Check for apparent four and four encoding.
uint_fast8_t header_mask = 0xff;
for(auto c : header) header_mask &= c;
header_mask &= 0xaa;
if(header_mask != 0xaa) continue;
sector->address.volume = ((header[0] << 1) | 1) & header[1];
sector->address.track = ((header[2] << 1) | 1) & header[3];
sector->address.sector = ((header[4] << 1) | 1) & header[5];
// Check the header checksum.
uint_fast8_t checksum = ((header[6] << 1) | 1) & header[7];
if(checksum != (sector->address.volume^sector->address.track^sector->address.sector)) continue;
// Unmap the sector contents as 6 and 2 data.
bool out_of_bounds = false;
for(auto &c : sector->data) {
if(c < 0x96 || six_and_two_unmapping[c - 0x96] == 0xff) {
out_of_bounds = true;
break;
}
c = six_and_two_unmapping[c - 0x96];
}
if(out_of_bounds) continue;
// Undo the XOR step on sector contents and check that checksum.
for(std::size_t c = 1; c < sector->data.size(); ++c) {
sector->data[c] ^= sector->data[c-1];
}
if(sector->data.back()) continue;
// Having checked the checksum, remove it.
sector->data.resize(sector->data.size() - 1);
// Undo the 6 and 2 mapping.
const uint8_t bit_reverse[] = {0, 2, 1, 3};
#define unmap(byte, nibble, shift) \
sector->data[86 + byte] = static_cast<uint8_t>(\
(sector->data[86 + byte] << 2) | bit_reverse[(sector->data[nibble] >> shift)&3]);
for(std::size_t c = 0; c < 84; ++c) {
unmap(c, c, 0);
unmap(c+86, c, 2);
unmap(c+172, c, 4);
}
unmap(84, 84, 0);
unmap(170, 84, 2);
unmap(85, 85, 0);
unmap(171, 85, 2);
#undef unmap
// Throw away the collection of two-bit chunks.
sector->data.erase(sector->data.begin(), sector->data.end() - 256);
// Add this sector to the map.
result.insert(std::make_pair(sector_location, std::move(*sector)));
}
} else {
// Just capture the header in place; it'll be decoded
// once a whole sector has been read.
header[pointer] = value;
++pointer;
if(pointer == 8) {
pointer = scanning_sentinel;
}
}
}
}
return result;
}