1
0
mirror of https://github.com/TomHarte/CLK.git synced 2024-11-26 23:52:26 +00:00
CLK/Storage/TimedEventLoop.cpp

92 lines
2.6 KiB
C++

//
// TimedEventLoop.cpp
// Clock Signal
//
// Created by Thomas Harte on 29/07/2016.
// Copyright © 2016 Thomas Harte. All rights reserved.
//
#include "TimedEventLoop.hpp"
#include "../NumberTheory/Factors.hpp"
using namespace Storage;
TimedEventLoop::TimedEventLoop(unsigned int input_clock_rate) :
_input_clock_rate(input_clock_rate) {}
void TimedEventLoop::run_for_cycles(int number_of_cycles)
{
_time_into_interval += (unsigned int)_stepper->step((uint64_t)number_of_cycles);
while(_time_into_interval >= _event_interval.length)
{
process_next_event();
}
}
void TimedEventLoop::reset_timer()
{
_time_into_interval = 0;
_stepper.reset();
}
void TimedEventLoop::reset_timer_to_offset(Time offset)
{
unsigned int common_clock_rate = NumberTheory::least_common_multiple(offset.clock_rate, _event_interval.clock_rate);
_time_into_interval = offset.length * (common_clock_rate / offset.clock_rate);
_event_interval.length *= common_clock_rate / _event_interval.clock_rate;
_event_interval.clock_rate = common_clock_rate;
if(common_clock_rate != _stepper->get_output_rate())
{
_stepper.reset(new SignalProcessing::Stepper(_event_interval.clock_rate, _input_clock_rate));
}
}
void TimedEventLoop::jump_to_next_event()
{
reset_timer();
process_next_event();
}
void TimedEventLoop::set_next_event_time_interval(Time interval)
{
// figure out how much time has been run since the last bit ended
if(_stepper)
{
_time_into_interval -= _event_interval.length;
if(_time_into_interval)
{
// simplify the quotient
unsigned int common_divisor = NumberTheory::greatest_common_divisor(_time_into_interval, _event_interval.clock_rate);
_time_into_interval /= common_divisor;
_event_interval.clock_rate /= common_divisor;
// build a quotient that is the sum of the time overrun plus the incoming time and adjust the time overrun
// to be in terms of the new quotient
unsigned int denominator = NumberTheory::least_common_multiple(_event_interval.clock_rate, interval.clock_rate);
interval.length *= denominator / interval.clock_rate;
interval.clock_rate = denominator;
_time_into_interval *= denominator / _event_interval.clock_rate;
}
}
else
{
_time_into_interval = 0;
}
// store new interval
_event_interval = interval;
// adjust stepper if required
if(!_stepper || _event_interval.clock_rate != _stepper->get_output_rate())
{
_stepper.reset(new SignalProcessing::Stepper(_event_interval.clock_rate, _input_clock_rate));
}
}
Time TimedEventLoop::get_time_into_next_event()
{
Time result = _event_interval;
result.length = _time_into_interval;
return result;
}