1
0
mirror of https://github.com/TomHarte/CLK.git synced 2025-01-11 08:30:55 +00:00
CLK/Storage/Disk/Track/PCMTrack.cpp
Ryan Carsten Schmidt 896632b9b6
Fix typos in comments
2023-12-04 10:39:03 -06:00

204 lines
7.7 KiB
C++

//
// PCMTrack.cpp
// Clock Signal
//
// Created by Thomas Harte on 10/07/2016.
// Copyright 2016 Thomas Harte. All rights reserved.
//
#include "PCMTrack.hpp"
#include "../../../Outputs/Log.hpp"
using namespace Storage::Disk;
PCMTrack::PCMTrack() : segment_pointer_(0) {}
PCMTrack::PCMTrack(const std::vector<PCMSegment> &segments) : PCMTrack() {
// sum total length of all segments
Time total_length;
for(const auto &segment : segments) {
total_length += segment.length_of_a_bit * unsigned(segment.data.size());
}
total_length.simplify();
// each segment is then some proportion of the total; for them all to sum to 1 they'll
// need to be adjusted to be
for(const auto &segment : segments) {
Time original_length_of_segment = segment.length_of_a_bit * unsigned(segment.data.size());
Time proportion_of_whole = original_length_of_segment / total_length;
proportion_of_whole.simplify();
PCMSegment length_adjusted_segment = segment;
length_adjusted_segment.length_of_a_bit = proportion_of_whole / unsigned(segment.data.size());
length_adjusted_segment.length_of_a_bit.simplify();
segment_event_sources_.emplace_back(length_adjusted_segment);
}
}
PCMTrack::PCMTrack(const PCMSegment &segment) : PCMTrack() {
// a single segment necessarily fills the track
PCMSegment length_adjusted_segment = segment;
length_adjusted_segment.length_of_a_bit.length = 1;
length_adjusted_segment.length_of_a_bit.clock_rate = unsigned(segment.data.size());
segment_event_sources_.emplace_back(std::move(length_adjusted_segment));
}
PCMTrack::PCMTrack(const PCMTrack &original) : PCMTrack() {
segment_event_sources_ = original.segment_event_sources_;
}
PCMTrack::PCMTrack(unsigned int bits_per_track) : PCMTrack() {
PCMSegment segment;
segment.length_of_a_bit.length = 1;
segment.length_of_a_bit.clock_rate = bits_per_track;
segment.data.resize(bits_per_track);
segment_event_sources_.emplace_back(segment);
}
PCMTrack *PCMTrack::resampled_clone(Track *original, size_t bits_per_track) {
PCMTrack *pcm_original = dynamic_cast<PCMTrack *>(original);
if(pcm_original) {
return pcm_original->resampled_clone(bits_per_track);
}
ERROR("NOT IMPLEMENTED: resampling non-PCMTracks");
return nullptr;
}
bool PCMTrack::is_resampled_clone() {
return is_resampled_clone_;
}
Track *PCMTrack::clone() const {
return new PCMTrack(*this);
}
PCMTrack *PCMTrack::resampled_clone(size_t bits_per_track) {
// Create an empty track.
PCMTrack *const new_track = new PCMTrack(unsigned(bits_per_track));
// Plot all segments from this track onto the destination.
Time start_time;
for(const auto &event_source: segment_event_sources_) {
const PCMSegment &source = event_source.segment();
new_track->add_segment(start_time, source, true);
start_time += source.length();
}
new_track->is_resampled_clone_ = true;
return new_track;
}
Track::Event PCMTrack::get_next_event() {
// ask the current segment for a new event
Track::Event event = segment_event_sources_[segment_pointer_].get_next_event();
// if it was a flux transition, that's code for end-of-segment, so dig deeper
if(event.type == Track::Event::IndexHole) {
// multiple segments may be crossed, so start summing lengths in case the net
// effect is an index hole
Time total_length = event.length;
// continue until somewhere not returning an index hole
while(event.type == Track::Event::IndexHole) {
// advance to [the start of] the next segment
segment_pointer_ = (segment_pointer_ + 1) % segment_event_sources_.size();
segment_event_sources_[segment_pointer_].reset();
// if this is all the way back to the start, that's a genuine index hole,
// so set the summed length and return
if(!segment_pointer_) {
return event;
}
// otherwise get the next event (if it's not another index hole, the loop will end momentarily),
// summing in any prior accumulated time
event = segment_event_sources_[segment_pointer_].get_next_event();
total_length += event.length;
event.length = total_length;
}
}
return event;
}
float PCMTrack::seek_to(float time_since_index_hole) {
// initial condition: no time yet accumulated, the whole thing requested yet to navigate
float accumulated_time = 0.0f;
float time_left_to_seek = time_since_index_hole;
// search from the first segment
segment_pointer_ = 0;
do {
// if this segment extends beyond the amount of time left to seek, trust it to complete
// the seek
const float segment_time = segment_event_sources_[segment_pointer_].get_length().get<float>();
if(segment_time > time_left_to_seek) {
return accumulated_time + segment_event_sources_[segment_pointer_].seek_to(time_left_to_seek);
}
// otherwise swallow this segment, updating the time left to seek and time so far accumulated
time_left_to_seek -= segment_time;
accumulated_time += segment_time;
segment_pointer_ = (segment_pointer_ + 1) % segment_event_sources_.size();
} while(segment_pointer_);
// if all segments have now been swallowed, the closest we can get is the very end of
// the list of segments
return accumulated_time;
}
void PCMTrack::add_segment(const Time &start_time, const PCMSegment &segment, bool clamp_to_index_hole) {
// Get a reference to the destination.
PCMSegment &destination = segment_event_sources_.front().segment();
// Determine the range to fill on the target segment.
const Time end_time = start_time + segment.length();
const size_t start_bit = start_time.length * destination.data.size() / start_time.clock_rate;
const size_t end_bit = end_time.length * destination.data.size() / end_time.clock_rate;
const size_t target_width = end_bit - start_bit;
const size_t half_offset = target_width / (2 * segment.data.size());
if(clamp_to_index_hole || end_bit <= destination.data.size()) {
// If clamping is applied, just write a single segment, from the start_bit to whichever is
// closer of the end of track and the end_bit.
const size_t selected_end_bit = std::min(end_bit, destination.data.size());
// Reset the destination.
std::fill(destination.data.begin() + ptrdiff_t(start_bit), destination.data.begin() + ptrdiff_t(selected_end_bit), false);
// Step through the source data from start to finish, stopping early if it goes out of bounds.
for(size_t bit = 0; bit < segment.data.size(); ++bit) {
if(segment.data[bit]) {
const size_t output_bit = start_bit + half_offset + (bit * target_width) / segment.data.size();
if(output_bit >= destination.data.size()) return;
destination.data[output_bit] = true;
}
}
} else {
// Clamping is not enabled, so the supplied segment loops over the index hole, arbitrarily many times.
// So work backwards unless or until the original start position is reached, then stop.
// This definitely runs over the index hole; check whether the whole track needs clearing, or whether
// a centre segment is untouched.
if(target_width >= destination.data.size()) {
std::fill(destination.data.begin(), destination.data.end(), false);
} else {
std::fill(destination.data.begin(), destination.data.begin() + ptrdiff_t(end_bit % destination.data.size()), false);
std::fill(destination.data.begin() + ptrdiff_t(start_bit), destination.data.end(), false);
}
// Run backwards from final bit back to first, stopping early if overlapping the beginning.
for(auto bit = ptrdiff_t(segment.data.size()-1); bit >= 0; --bit) {
// Store flux transitions only; non-transitions can be ignored.
if(segment.data[size_t(bit)]) {
// Map to the proper output destination; stop if now potentially overwriting where we began.
const size_t output_bit = start_bit + half_offset + (size_t(bit) * target_width) / segment.data.size();
if(output_bit < end_bit - destination.data.size()) return;
// Store.
destination.data[output_bit % destination.data.size()] = true;
}
}
}
}