1
0
mirror of https://github.com/TomHarte/CLK.git synced 2024-07-10 12:29:01 +00:00
CLK/Components/9918/9918.cpp

403 lines
11 KiB
C++

//
// 9918.cpp
// Clock Signal
//
// Created by Thomas Harte on 25/11/2017.
// Copyright © 2017 Thomas Harte. All rights reserved.
//
#include "9918.hpp"
using namespace TI;
namespace {
const uint32_t palette_pack(uint8_t r, uint8_t g, uint8_t b) {
uint32_t result = 0;
uint8_t *result_ptr = reinterpret_cast<uint8_t *>(&result);
result_ptr[0] = r;
result_ptr[1] = g;
result_ptr[2] = b;
result_ptr[3] = 0;
return result;
}
const uint32_t palette[16] = {
palette_pack(0, 0, 0),
palette_pack(0, 0, 0),
palette_pack(90, 201, 81),
palette_pack(149, 231, 133),
palette_pack(113, 104, 183),
palette_pack(146, 132, 255),
palette_pack(200, 114, 89),
palette_pack(115, 222, 255),
palette_pack(238, 124, 90),
palette_pack(255, 166, 132),
palette_pack(219, 232, 92),
palette_pack(240, 247, 143),
palette_pack(78, 176, 63),
palette_pack(202, 118, 216),
palette_pack(233, 233, 233),
palette_pack(255, 255, 255)
};
}
TMS9918::TMS9918(Personality p) :
crt_(new Outputs::CRT::CRT(342, 1, Outputs::CRT::DisplayType::NTSC60, 4)) {
crt_->set_rgb_sampling_function(
"vec3 rgb_sample(usampler2D sampler, vec2 coordinate, vec2 icoordinate)"
"{"
"return texture(sampler, coordinate).rgb / vec3(255.0);"
"}");
crt_->set_output_device(Outputs::CRT::OutputDevice::Monitor);
}
std::shared_ptr<Outputs::CRT::CRT> TMS9918::get_crt() {
return crt_;
}
void TMS9918::run_for(const HalfCycles cycles) {
// As specific as I've been able to get:
// Scanline time is always 227.75 cycles.
// PAL output is 313 lines total. NTSC output is 262 lines total.
// Interrupt is signalled upon entering the lower border.
// Keep a count of cycles separate from internal counts to avoid
// potential errors mapping back and forth.
half_cycles_into_frame_ = (half_cycles_into_frame_ + cycles) % HalfCycles(frame_lines_ * 228 * 2);
// Convert to 342 cycles per line; the internal clock is 1.5 times the
// nominal 3.579545 Mhz that I've advertised for this part.
int int_cycles = (cycles.as_int() * 3) + cycles_error_;
cycles_error_ = int_cycles & 7;
int_cycles >>= 3;
if(!int_cycles) return;
//
// Break that down as:
// 26 cycles sync;
while(int_cycles) {
int cycles_left = std::min(342 - column_, int_cycles);
column_ += cycles_left;
int_cycles -= cycles_left;
if(row_ < 192 && !blank_screen_) {
// ------------------------
// Perform memory accesses.
// ------------------------
const int access_slot = column_ >> 1; // There are only 171 available memory accesses per line.
switch(line_mode_) {
case LineMode::Text:
while(access_pointer_ < access_slot) {
if(access_pointer_ < 29) {
access_pointer_ = std::min(29, access_slot);
}
if(access_pointer_ >= 29) {
int row_base = pattern_name_address_ + (row_ >> 3) * 40;
int character_column = (access_pointer_ - 29) / 3;
const int end = std::min(149, access_slot);
while(access_pointer_ < end) {
switch(access_pointer_%3) {
case 0:
pattern_buffer_[character_column] = ram_[pattern_generator_table_address_ + (pattern_name_ << 3) + (row_ & 7)];
character_column++;
break;
case 1: break; // TODO: CPU access.
case 2:
pattern_name_ = ram_[row_base + character_column];
break;
}
access_pointer_++;
}
}
if(access_pointer_ >= 149) {
access_pointer_ = access_slot;
}
}
break;
case LineMode::Character:
while(access_pointer_ < access_slot) {
if(access_pointer_ < 26) {
access_pointer_ = std::min(26, access_slot);
}
if(access_pointer_ >= 26) {
int end = std::min(154, access_slot);
int row_base = pattern_name_address_;
int pattern_base = pattern_generator_table_address_;
int colour_base = colour_table_address_;
int colour_shift = 3;
if(screen_mode_ == 1) {
pattern_base &= 0x2000 | ((row_ & 0xc0) << 5);
colour_base &= 0x2000 | ((row_ & 0xc0) << 5);
colour_shift = 0;
}
row_base += (row_ << 2)&~31;
// TODO: optimise this mess.
while(access_pointer_ < end) {
int character_column = ((access_pointer_ - 26) >> 2);
switch(access_pointer_&3) {
case 0:
pattern_name_ = ram_[row_base + character_column];
break;
case 1: break; // TODO: sprites / CPU access.
case 2:
colour_buffer_[character_column] = ram_[colour_base + (pattern_name_ >> colour_shift)];
break;
case 3:
pattern_buffer_[character_column] = ram_[pattern_base + (pattern_name_ << 3) + (row_ & 7)];
break;
}
access_pointer_++;
}
}
if(access_pointer_ >= 154) {
access_pointer_ = access_slot;
}
}
break;
}
// --------------------
// End memory accesses.
// --------------------
// ----------------------
// Output horizontal sync
// ----------------------
if(!output_column_ && column_ >= 26) {
crt_->output_sync(static_cast<unsigned int>(26));
output_column_ = 26;
}
// --------------------------
// TODO: output colour burst.
// --------------------------
// -------------------
// Output left border.
// -------------------
if(output_column_ >= 26) {
int pixels_end = std::min(first_pixel_column_, column_);
if(output_column_ < pixels_end) {
output_border(pixels_end - output_column_);
output_column_ = pixels_end;
// Grab a pointer for drawing pixels to, if the moment has arrived.
if(pixels_end == first_pixel_column_) {
pixel_target_ = reinterpret_cast<uint32_t *>(crt_->allocate_write_area(static_cast<unsigned int>(first_right_border_column_ - first_pixel_column_)));
}
}
}
// --------------
// Output pixels.
// --------------
if(output_column_ >= first_pixel_column_) {
int pixels_end = std::min(first_right_border_column_, column_);
if(output_column_ < pixels_end) {
switch(line_mode_) {
case LineMode::Text:
while(output_column_ < pixels_end) {
const int base = (output_column_ - first_pixel_column_);
const int address = base / 6;
const uint8_t pattern = pattern_buffer_[address] << (base % 6);
*pixel_target_ = (pattern&0x80) ? palette[text_colour_] : palette[background_colour_];
pixel_target_ ++;
output_column_ ++;
}
break;
case LineMode::Character:
while(output_column_ < pixels_end) {
int base = (output_column_ - first_pixel_column_);
int address = base >> 3;
uint8_t colour = colour_buffer_[address];
uint8_t pattern = pattern_buffer_[address];
pattern >>= ((base&7)^7);
*pixel_target_ = (pattern&1) ? palette[colour >> 4] : palette[colour & 15];
pixel_target_ ++;
output_column_ ++;
}
break;
}
if(output_column_ == first_right_border_column_) {
crt_->output_data(static_cast<unsigned int>(first_right_border_column_ - first_pixel_column_), 1);
pixel_target_ = nullptr;
}
}
}
// --------------------
// Output right border.
// --------------------
if(output_column_ >= first_right_border_column_) {
output_border(column_ - output_column_);
output_column_ = column_;
}
} else if(row_ >= first_vsync_line_ && row_ < first_vsync_line_+3) {
// Vertical sync.
if(column_ == 342) {
crt_->output_sync(static_cast<unsigned int>(342));
}
} else {
// Blank.
if(!output_column_ && column_ >= 26) {
crt_->output_sync(static_cast<unsigned int>(26));
output_column_ = 26;
}
if(output_column_ >= 26) {
output_border(column_ - output_column_);
output_column_ = column_;
}
}
if(column_ == 342) {
access_pointer_ = column_ = output_column_ = 0;
row_ = (row_ + 1) % frame_lines_;
if(row_ == 192) status_ |= 0x80;
screen_mode_ = next_screen_mode_;
blank_screen_ = next_blank_screen_;
switch(screen_mode_) {
case 2:
line_mode_ = LineMode::Text;
first_pixel_column_ = 69;
first_right_border_column_ = 309;
break;
default:
line_mode_ = LineMode::Character;
first_pixel_column_ = 63;
first_right_border_column_ = 319;
break;
}
}
}
}
void TMS9918::output_border(int cycles) {
pixel_target_ = reinterpret_cast<uint32_t *>(crt_->allocate_write_area(1));
if(pixel_target_) *pixel_target_ = palette[background_colour_];
crt_->output_level(static_cast<unsigned int>(cycles));
}
// TODO: as a temporary development measure, memory access below is magically instantaneous. Correct that.
void TMS9918::set_register(int address, uint8_t value) {
// Writes to address 0 are writes to the video RAM. Store
// the value and return.
if(!(address & 1)) {
write_phase_ = false;
read_ahead_buffer_ = value;
ram_[ram_pointer_ & 16383] = value;
ram_pointer_++;
return;
}
// Writes to address 1 are performed in pairs; if this is the
// low byte of a value, store it and wait for the high byte.
if(!write_phase_) {
low_write_ = value;
write_phase_ = true;
return;
}
write_phase_ = false;
if(value & 0x80) {
// This is a write to a register.
switch(value & 7) {
case 0:
next_screen_mode_ = (next_screen_mode_ & 6) | ((low_write_ & 2) >> 1);
printf("NSM: %02x\n", next_screen_mode_);
break;
case 1:
next_blank_screen_ = !(low_write_ & 0x40);
generate_interrupts_ = !!(low_write_ & 0x20);
next_screen_mode_ = (next_screen_mode_ & 1) | ((low_write_ & 0x18) >> 3);
sprites_16x16_ = !!(low_write_ & 0x02);
sprites_magnified_ = !!(low_write_ & 0x01);
printf("NSM: %02x\n", next_screen_mode_);
break;
case 2:
pattern_name_address_ = static_cast<uint16_t>((low_write_ & 0xf) << 10);
break;
case 3:
colour_table_address_ = static_cast<uint16_t>(low_write_ << 6);
break;
case 4:
pattern_generator_table_address_ = static_cast<uint16_t>((low_write_ & 0x07) << 11);
break;
case 5:
sprite_attribute_table_address_ = static_cast<uint16_t>((low_write_ & 0x7f) << 7);
break;
case 6:
sprite_generator_table_address_ = static_cast<uint16_t>((low_write_ & 0x07) << 11);
break;
case 7:
text_background_colour_ = low_write_;
text_colour_ = low_write_ >> 4;
background_colour_ = low_write_ & 0xf;
break;
}
} else {
// This is a write to the RAM pointer.
ram_pointer_ = static_cast<uint16_t>(low_write_ | (value << 8));
if(!(value & 0x40)) {
// Officially a 'read' set, so perform lookahead.
read_ahead_buffer_ = ram_[ram_pointer_ & 16383];
ram_pointer_++;
}
}
}
uint8_t TMS9918::get_register(int address) {
write_phase_ = false;
// Reads from address 0 read video RAM, via the read-ahead buffer.
if(!(address & 1)) {
uint8_t result = read_ahead_buffer_;
read_ahead_buffer_ = ram_[ram_pointer_ & 16383];
ram_pointer_++;
return result;
}
// Reads from address 1 get the status register;
uint8_t result = status_;
status_ &= ~(0x80 | 0x20);
return result;
}
HalfCycles TMS9918::get_time_until_interrupt() {
if(!generate_interrupts_) return HalfCycles(-1);
if(get_interrupt_line()) return HalfCycles(-1);
const int half_cycles_per_frame = frame_lines_ * 228 * 2;
int half_cycles_remaining = (192 * 228 * 2 + half_cycles_per_frame - half_cycles_into_frame_.as_int()) % half_cycles_per_frame;
return HalfCycles(half_cycles_remaining);
}
bool TMS9918::get_interrupt_line() {
return (status_ & 0x80) && generate_interrupts_;
}