1
0
mirror of https://github.com/TomHarte/CLK.git synced 2025-01-14 13:33:42 +00:00
2023-11-14 16:23:24 -05:00

202 lines
6.0 KiB
C++

//
// Stack.hpp
// Clock Signal
//
// Created by Thomas Harte on 08/11/2023.
// Copyright © 2023 Thomas Harte. All rights reserved.
//
#ifndef Stack_hpp
#define Stack_hpp
#include "../AccessType.hpp"
#include <type_traits>
namespace InstructionSet::x86::Primitive {
// The below takes a reference in order properly to handle PUSH SP,
// which should place the value of SP after the push onto the stack.
template <typename IntT, bool preauthorised, typename ContextT>
void push(
IntT &value,
ContextT &context
) {
context.registers.sp() -= sizeof(IntT);
if constexpr (preauthorised) {
context.memory.template preauthorised_write<IntT>(Source::SS, context.registers.sp(), value);
} else {
context.memory.template access<IntT, AccessType::Write>(
Source::SS,
context.registers.sp()) = value;
}
context.memory.template write_back<IntT>();
}
template <typename IntT, bool preauthorised, typename ContextT>
IntT pop(
ContextT &context
) {
const auto value = context.memory.template access<IntT, preauthorised ? AccessType::PreauthorisedRead : AccessType::Read>(
Source::SS,
context.registers.sp());
context.registers.sp() += sizeof(IntT);
return value;
}
template <typename ContextT>
void sahf(
uint8_t &ah,
ContextT &context
) {
/*
EFLAGS(SF:ZF:0:AF:0:PF:1:CF) ← AH;
*/
context.flags.template set_from<uint8_t, Flag::Sign>(ah);
context.flags.template set_from<Flag::Zero>(!(ah & 0x40));
context.flags.template set_from<Flag::AuxiliaryCarry>(ah & 0x10);
context.flags.template set_from<Flag::ParityOdd>(!(ah & 0x04));
context.flags.template set_from<Flag::Carry>(ah & 0x01);
}
template <typename ContextT>
void lahf(
uint8_t &ah,
ContextT &context
) {
/*
AH ← EFLAGS(SF:ZF:0:AF:0:PF:1:CF);
*/
ah =
(context.flags.template flag<Flag::Sign>() ? 0x80 : 0x00) |
(context.flags.template flag<Flag::Zero>() ? 0x40 : 0x00) |
(context.flags.template flag<Flag::AuxiliaryCarry>() ? 0x10 : 0x00) |
(context.flags.template flag<Flag::ParityOdd>() ? 0x00 : 0x04) |
0x02 |
(context.flags.template flag<Flag::Carry>() ? 0x01 : 0x00);
}
template <typename ContextT>
void popf(
ContextT &context
) {
context.flags.set(pop<uint16_t, false>(context));
}
template <typename ContextT>
void pushf(
ContextT &context
) {
uint16_t value = context.flags.get();
push<uint16_t, false>(value, context);
}
template <typename IntT, typename ContextT>
void popa(
ContextT &context
) {
context.memory.preauthorise_stack_read(sizeof(IntT) * 8);
if constexpr (std::is_same_v<IntT, uint32_t>) {
context.registers.edi() = pop<uint32_t, true>(context);
context.registers.esi() = pop<uint32_t, true>(context);
context.registers.ebp() = pop<uint32_t, true>(context);
context.registers.esp() += 4;
context.registers.ebx() = pop<uint32_t, true>(context);
context.registers.edx() = pop<uint32_t, true>(context);
context.registers.ecx() = pop<uint32_t, true>(context);
context.registers.eax() = pop<uint32_t, true>(context);
} else {
context.registers.di() = pop<uint16_t, true>(context);
context.registers.si() = pop<uint16_t, true>(context);
context.registers.bp() = pop<uint16_t, true>(context);
context.registers.sp() += 2;
context.registers.bx() = pop<uint16_t, true>(context);
context.registers.dx() = pop<uint16_t, true>(context);
context.registers.cx() = pop<uint16_t, true>(context);
context.registers.ax() = pop<uint16_t, true>(context);
}
}
template <typename IntT, typename ContextT>
void pusha(
ContextT &context
) {
context.memory.preauthorise_stack_read(sizeof(IntT) * 8);
IntT initial_sp = context.registers.sp();
if constexpr (std::is_same_v<IntT, uint32_t>) {
push<uint32_t, true>(context.registers.eax(), context);
push<uint32_t, true>(context.registers.ecx(), context);
push<uint32_t, true>(context.registers.edx(), context);
push<uint32_t, true>(context.registers.ebx(), context);
push<uint32_t, true>(initial_sp, context);
push<uint32_t, true>(context.registers.ebp(), context);
push<uint32_t, true>(context.registers.esi(), context);
push<uint32_t, true>(context.registers.esi(), context);
} else {
push<uint16_t, true>(context.registers.ax(), context);
push<uint16_t, true>(context.registers.cx(), context);
push<uint16_t, true>(context.registers.dx(), context);
push<uint16_t, true>(context.registers.bx(), context);
push<uint16_t, true>(initial_sp, context);
push<uint16_t, true>(context.registers.bp(), context);
push<uint16_t, true>(context.registers.si(), context);
push<uint16_t, true>(context.registers.si(), context);
}
}
template <typename IntT, typename InstructionT, typename ContextT>
void enter(
const InstructionT &instruction,
ContextT &context
) {
// TODO: all non-16bit address sizes.
const auto alloc_size = instruction.dynamic_storage_size();
const auto nesting_level = instruction.nesting_level() & 0x1f;
// Preauthorse contents that'll be fetched via BP.
const auto copied_pointers = nesting_level - 2;
if(copied_pointers > 0) {
context.memory.preauthorise_read(
Source::SS,
context.registers.bp() - copied_pointers * sizeof(uint16_t),
copied_pointers * sizeof(uint16_t)
);
}
// Preauthorse stack activity.
context.memory.preauthorise_stack_write((1 + copied_pointers) * sizeof(uint16_t));
// Push BP and grab the end of frame.
push<uint16_t, true>(context.registers.bp(), context);
const auto frame = context.registers.sp();
// Copy data as per the nesting level.
for(int c = 1; c < nesting_level; c++) {
context.registers.bp() -= 2;
const auto value = context.memory.template preauthorised_read<uint16_t>(Source::SS, context.registers.bp());
push<uint16_t, true>(value);
}
// Set final BP.
context.registers.bp() = frame;
}
template <typename IntT, typename ContextT>
void leave(
ContextT &context
) {
// TODO: should use StackAddressSize to determine assignment of bp to sp.
if constexpr (std::is_same_v<IntT, uint32_t>) {
context.registers.esp() = context.registers.ebp();
context.registers.ebp() = pop<uint32_t, false>(context);
} else {
context.registers.sp() = context.registers.bp();
context.registers.bp() = pop<uint16_t, false>(context);
}
}
}
#endif /* Stack_hpp */