1
0
mirror of https://github.com/TomHarte/CLK.git synced 2024-07-16 22:28:57 +00:00
CLK/Outputs/CRT/CRT.cpp

334 lines
13 KiB
C++

//
// CRT.cpp
// Clock Signal
//
// Created by Thomas Harte on 19/07/2015.
// Copyright © 2015 Thomas Harte. All rights reserved.
//
#include "CRT.hpp"
#include "CRTOpenGL.hpp"
#include <stdarg.h>
#include <math.h>
using namespace Outputs;
static const uint32_t kCRTFixedPointRange = 0xf7ffffff;
static const uint32_t kCRTFixedPointOffset = 0x04000000;
#define kRetraceXMask 0x01
#define kRetraceYMask 0x02
void CRT::set_new_timing(unsigned int cycles_per_line, unsigned int height_of_display, ColourSpace colour_space, unsigned int colour_cycle_numerator, unsigned int colour_cycle_denominator)
{
_colour_space = colour_space;
_colour_cycle_numerator = colour_cycle_numerator;
_colour_cycle_denominator = colour_cycle_denominator;
const unsigned int syncCapacityLineChargeThreshold = 3;
const unsigned int millisecondsHorizontalRetraceTime = 7; // source: Dictionary of Video and Television Technology, p. 234
const unsigned int scanlinesVerticalRetraceTime = 10; // source: ibid
// To quote:
//
// "retrace interval; The interval of time for the return of the blanked scanning beam of
// a TV picture tube or camera tube to the starting point of a line or field. It is about 7 µs
// for horizontal retrace and 500 to 750 µs for vertical retrace in NTSC and PAL TV."
_time_multiplier = (2000 + cycles_per_line - 1) / cycles_per_line;
// store fundamental display configuration properties
_height_of_display = height_of_display;
_cycles_per_line = cycles_per_line * _time_multiplier;
// generate timing values implied by the given arbuments
_sync_capacitor_charge_threshold = ((syncCapacityLineChargeThreshold * _cycles_per_line) * 50) >> 7;
const unsigned int vertical_retrace_time = scanlinesVerticalRetraceTime * _cycles_per_line;
const float halfLineWidth = (float)_height_of_display * 1.94f;
// creat the two flywheels
unsigned int horizontal_retrace_time = scanlinesVerticalRetraceTime * _cycles_per_line;
_horizontal_flywheel = std::unique_ptr<Outputs::Flywheel>(new Outputs::Flywheel(_cycles_per_line, (millisecondsHorizontalRetraceTime * _cycles_per_line) >> 6));
_vertical_flywheel = std::unique_ptr<Outputs::Flywheel>(new Outputs::Flywheel(_cycles_per_line * height_of_display, scanlinesVerticalRetraceTime * _cycles_per_line));
for(int c = 0; c < 4; c++)
{
_scanSpeed[c].x = (c&kRetraceXMask) ? -(kCRTFixedPointRange / horizontal_retrace_time) : (kCRTFixedPointRange / _cycles_per_line);
_scanSpeed[c].y = (c&kRetraceYMask) ? -(kCRTFixedPointRange / vertical_retrace_time) : (kCRTFixedPointRange / (_height_of_display * _cycles_per_line));
// width should be 1.0 / _height_of_display, rotated to match the direction
float angle = atan2f(_scanSpeed[c].y, _scanSpeed[c].x);
_beamWidth[c].x = (uint32_t)((sinf(angle) / halfLineWidth) * kCRTFixedPointRange);
_beamWidth[c].y = (uint32_t)((cosf(angle) / halfLineWidth) * kCRTFixedPointRange);
}
}
void CRT::set_new_display_type(unsigned int cycles_per_line, DisplayType displayType)
{
switch(displayType)
{
case DisplayType::PAL50:
set_new_timing(cycles_per_line, 312, ColourSpace::YUV, 1135, 4);
break;
case DisplayType::NTSC60:
set_new_timing(cycles_per_line, 262, ColourSpace::YIQ, 545, 2);
break;
}
}
void CRT::allocate_buffers(unsigned int number, va_list sizes)
{
_run_builders = new CRTRunBuilder *[kCRTNumberOfFrames];
for(int builder = 0; builder < kCRTNumberOfFrames; builder++)
{
_run_builders[builder] = new CRTRunBuilder();
}
va_list va;
va_copy(va, sizes);
_buffer_builder = std::unique_ptr<CRTInputBufferBuilder>(new CRTInputBufferBuilder(number, va));
va_end(va);
}
CRT::CRT() :
_next_scan(0),
_run_write_pointer(0),
_sync_capacitor_charge_level(0),
_is_receiving_sync(false),
_output_mutex(new std::mutex),
_visible_area(Rect(0, 0, 1, 1)),
_rasterPosition({.x = 0, .y = 0})
{
construct_openGL();
}
CRT::~CRT()
{
for(int builder = 0; builder < kCRTNumberOfFrames; builder++)
{
delete _run_builders[builder];
}
delete[] _run_builders;
destruct_openGL();
}
CRT::CRT(unsigned int cycles_per_line, unsigned int height_of_display, ColourSpace colour_space, unsigned int colour_cycle_numerator, unsigned int colour_cycle_denominator, unsigned int number_of_buffers, ...) : CRT()
{
set_new_timing(cycles_per_line, height_of_display, colour_space, colour_cycle_numerator, colour_cycle_denominator);
va_list buffer_sizes;
va_start(buffer_sizes, number_of_buffers);
allocate_buffers(number_of_buffers, buffer_sizes);
va_end(buffer_sizes);
}
CRT::CRT(unsigned int cycles_per_line, DisplayType displayType, unsigned int number_of_buffers, ...) : CRT()
{
set_new_display_type(cycles_per_line, displayType);
va_list buffer_sizes;
va_start(buffer_sizes, number_of_buffers);
allocate_buffers(number_of_buffers, buffer_sizes);
va_end(buffer_sizes);
}
#pragma mark - Sync loop
Flywheel::SyncEvent CRT::get_next_vertical_sync_event(bool vsync_is_requested, unsigned int cycles_to_run_for, unsigned int *cycles_advanced)
{
return _vertical_flywheel->get_next_event_in_period(vsync_is_requested, cycles_to_run_for, cycles_advanced);
}
Flywheel::SyncEvent CRT::get_next_horizontal_sync_event(bool hsync_is_requested, unsigned int cycles_to_run_for, unsigned int *cycles_advanced)
{
return _horizontal_flywheel->get_next_event_in_period(hsync_is_requested, cycles_to_run_for, cycles_advanced);
}
void CRT::advance_cycles(unsigned int number_of_cycles, unsigned int source_divider, bool hsync_requested, bool vsync_requested, const bool vsync_charging, const Type type, uint16_t tex_x, uint16_t tex_y)
{
number_of_cycles *= _time_multiplier;
bool is_output_run = ((type == Type::Level) || (type == Type::Data));
vsync_requested &= (_sync_capacitor_charge_level >= _sync_capacitor_charge_threshold);
while(number_of_cycles) {
unsigned int time_until_vertical_sync_event, time_until_horizontal_sync_event;
Flywheel::SyncEvent next_vertical_sync_event = get_next_vertical_sync_event(vsync_requested, number_of_cycles, &time_until_vertical_sync_event);
Flywheel::SyncEvent next_horizontal_sync_event = get_next_horizontal_sync_event(hsync_requested, time_until_vertical_sync_event, &time_until_horizontal_sync_event);
// get the next sync event and its timing; hsync request is instantaneous (being edge triggered) so
// set it to false for the next run through this loop (if any)
unsigned int next_run_length = std::min(time_until_vertical_sync_event, time_until_horizontal_sync_event);
hsync_requested = false;
vsync_requested = false;
uint8_t *next_run = (is_output_run && next_run_length) ? _run_builders[_run_write_pointer]->get_next_input_run() : nullptr;
int lengthMask = (_horizontal_flywheel->is_in_retrace() ? kRetraceXMask : 0) | (_vertical_flywheel->is_in_retrace() ? kRetraceYMask : 0);
#define position_x(v) (*(uint16_t *)&next_run[kCRTSizeOfVertex*v + kCRTVertexOffsetOfPosition + 0])
#define position_y(v) (*(uint16_t *)&next_run[kCRTSizeOfVertex*v + kCRTVertexOffsetOfPosition + 2])
#define tex_x(v) (*(uint16_t *)&next_run[kCRTSizeOfVertex*v + kCRTVertexOffsetOfTexCoord + 0])
#define tex_y(v) (*(uint16_t *)&next_run[kCRTSizeOfVertex*v + kCRTVertexOffsetOfTexCoord + 2])
#define lateral(v) next_run[kCRTSizeOfVertex*v + kCRTVertexOffsetOfLateral]
#define timestamp(v) (*(uint32_t *)&next_run[kCRTSizeOfVertex*v + kCRTVertexOffsetOfTimestamp])
#define InternalToUInt16(v) ((v) + 32768) >> 16
#define CounterToInternal(c) (unsigned int)(((uint64_t)c->get_current_output_position() * kCRTFixedPointRange) / c->get_scan_period())
if(next_run)
{
unsigned int x_position = CounterToInternal(_horizontal_flywheel);
unsigned int y_position = CounterToInternal(_vertical_flywheel);
// set the type, initial raster position and type of this run
position_x(0) = position_x(4) = InternalToUInt16(kCRTFixedPointOffset + x_position + _beamWidth[lengthMask].x);
position_y(0) = position_y(4) = InternalToUInt16(kCRTFixedPointOffset + y_position + _beamWidth[lengthMask].y);
position_x(1) = InternalToUInt16(kCRTFixedPointOffset + x_position - _beamWidth[lengthMask].x);
position_y(1) = InternalToUInt16(kCRTFixedPointOffset + y_position - _beamWidth[lengthMask].y);
timestamp(0) = timestamp(1) = timestamp(4) = _run_builders[_run_write_pointer]->duration;
tex_x(0) = tex_x(1) = tex_x(4) = tex_x;
// these things are constants across the line so just throw them out now
tex_y(0) = tex_y(4) = tex_y(1) = tex_y(2) = tex_y(3) = tex_y(5) = tex_y;
lateral(0) = lateral(4) = lateral(5) = 0;
lateral(1) = lateral(2) = lateral(3) = 1;
}
// decrement the number of cycles left to run for and increment the
// horizontal counter appropriately
number_of_cycles -= next_run_length;
_run_builders[_run_write_pointer]->duration += next_run_length;
// either charge or deplete the vertical retrace capacitor (making sure it stops at 0)
if (vsync_charging && !_vertical_flywheel->is_in_retrace())
_sync_capacitor_charge_level += next_run_length;
else
_sync_capacitor_charge_level = std::max(_sync_capacitor_charge_level - (int)next_run_length, 0);
// react to the incoming event...
_horizontal_flywheel->apply_event(next_run_length, (next_run_length == time_until_horizontal_sync_event) ? next_horizontal_sync_event : Flywheel::SyncEvent::None);
_vertical_flywheel->apply_event(next_run_length, (next_run_length == time_until_vertical_sync_event) ? next_vertical_sync_event : Flywheel::SyncEvent::None);
if(next_run)
{
unsigned int x_position = CounterToInternal(_horizontal_flywheel);
unsigned int y_position = CounterToInternal(_vertical_flywheel);
// store the final raster position
position_x(2) = position_x(3) = InternalToUInt16(kCRTFixedPointOffset + x_position - _beamWidth[lengthMask].x);
position_y(2) = position_y(3) = InternalToUInt16(kCRTFixedPointOffset + y_position - _beamWidth[lengthMask].y);
position_x(5) = InternalToUInt16(kCRTFixedPointOffset + x_position + _beamWidth[lengthMask].x);
position_y(5) = InternalToUInt16(kCRTFixedPointOffset + y_position + _beamWidth[lengthMask].y);
timestamp(2) = timestamp(3) = timestamp(5) = _run_builders[_run_write_pointer]->duration;
// if this is a data run then advance the buffer pointer
if(type == Type::Data && source_divider) tex_x += next_run_length / (_time_multiplier * source_divider);
// if this is a data or level run then store the end point
tex_x(2) = tex_x(3) = tex_x(5) = tex_x;
}
if(next_run_length == time_until_vertical_sync_event && next_vertical_sync_event == Flywheel::SyncEvent::EndRetrace)
{
// TODO: how to communicate did_detect_vsync? Bring the delegate back?
// _delegate->crt_did_end_frame(this, &_current_frame_builder->frame, _did_detect_vsync);
_run_write_pointer = (_run_write_pointer + 1)%kCRTNumberOfFrames;
_run_builders[_run_write_pointer]->reset();
}
}
}
#pragma mark - stream feeding methods
void CRT::output_scan()
{
_next_scan ^= 1;
Scan *scan = &_scans[_next_scan];
bool this_is_sync = (scan->type == Type::Sync);
bool hsync_requested = !_is_receiving_sync && this_is_sync;
bool vsync_requested = _is_receiving_sync && !this_is_sync;
_is_receiving_sync = this_is_sync;
advance_cycles(scan->number_of_cycles, scan->source_divider, hsync_requested, vsync_requested, this_is_sync, scan->type, scan->tex_x, scan->tex_y);
}
/*
These all merely channel into advance_cycles, supplying appropriate arguments
*/
void CRT::output_sync(unsigned int number_of_cycles)
{
_output_mutex->lock();
_scans[_next_scan].type = Type::Sync;
_scans[_next_scan].number_of_cycles = number_of_cycles;
output_scan();
_output_mutex->unlock();
}
void CRT::output_blank(unsigned int number_of_cycles)
{
_output_mutex->lock();
_scans[_next_scan].type = Type::Blank;
_scans[_next_scan].number_of_cycles = number_of_cycles;
output_scan();
_output_mutex->unlock();
}
void CRT::output_level(unsigned int number_of_cycles)
{
_output_mutex->lock();
_scans[_next_scan].type = Type::Level;
_scans[_next_scan].number_of_cycles = number_of_cycles;
_scans[_next_scan].tex_x = _buffer_builder->_write_x_position;
_scans[_next_scan].tex_y = _buffer_builder->_write_y_position;
output_scan();
_output_mutex->unlock();
}
void CRT::output_colour_burst(unsigned int number_of_cycles, uint8_t phase, uint8_t magnitude)
{
_output_mutex->lock();
_scans[_next_scan].type = Type::ColourBurst;
_scans[_next_scan].number_of_cycles = number_of_cycles;
_scans[_next_scan].phase = phase;
_scans[_next_scan].magnitude = magnitude;
output_scan();
_output_mutex->unlock();
}
void CRT::output_data(unsigned int number_of_cycles, unsigned int source_divider)
{
_output_mutex->lock();
_buffer_builder->reduce_previous_allocation_to(number_of_cycles / source_divider);
_scans[_next_scan].type = Type::Data;
_scans[_next_scan].number_of_cycles = number_of_cycles;
_scans[_next_scan].tex_x = _buffer_builder->_write_x_position;
_scans[_next_scan].tex_y = _buffer_builder->_write_y_position;
_scans[_next_scan].source_divider = source_divider;
output_scan();
_output_mutex->unlock();
}
#pragma mark - Buffer supply
void CRT::allocate_write_area(size_t required_length)
{
_output_mutex->lock();
_buffer_builder->allocate_write_area(required_length);
_output_mutex->unlock();
}
uint8_t *CRT::get_write_target_for_buffer(int buffer)
{
return _buffer_builder->get_write_target_for_buffer(buffer);
}