1
0
mirror of https://github.com/TomHarte/CLK.git synced 2025-01-25 09:30:14 +00:00
CLK/Outputs/OpenGL/ScanTarget.cpp
Thomas Harte 230b9fc9e6 Permits multiple simultaneous scan reading ranges.
Also updates the OpenGL scan target as per the latest movements of things.
2020-08-12 22:08:41 -04:00

504 lines
19 KiB
C++

//
// ScanTarget.cpp
// Clock Signal
//
// Created by Thomas Harte on 05/11/2018.
// Copyright © 2018 Thomas Harte. All rights reserved.
//
#include "ScanTarget.hpp"
#include "OpenGL.hpp"
#include "Primitives/Rectangle.hpp"
#include <cassert>
#include <cstring>
#include <limits>
using namespace Outputs::Display::OpenGL;
#ifndef NDEBUG
//#define LOG_LINES
//#define LOG_SCANS
#endif
namespace {
/// The texture unit from which to source input data.
constexpr GLenum SourceDataTextureUnit = GL_TEXTURE0;
/// The texture unit which contains raw line-by-line composite, S-Video or RGB data.
constexpr GLenum UnprocessedLineBufferTextureUnit = GL_TEXTURE1;
/// The texture unit that contains a pre-lowpass-filtered but fixed-resolution version of the chroma signal;
/// this is used when processing composite video only, and for chroma information only. Luminance is calculated
/// at the fidelity permitted by the output target, but my efforts to separate, demodulate and filter
/// chrominance during output without either massively sampling or else incurring significant high-frequency
/// noise that sampling reduces into a Moire, have proven to be unsuccessful for the time being.
constexpr GLenum QAMChromaTextureUnit = GL_TEXTURE2;
/// The texture unit that contains the current display.
constexpr GLenum AccumulationTextureUnit = GL_TEXTURE3;
constexpr GLint internalFormatForDepth(std::size_t depth) {
switch(depth) {
default: return GL_FALSE;
case 1: return GL_R8UI;
case 2: return GL_RG8UI;
case 3: return GL_RGB8UI;
case 4: return GL_RGBA8UI;
}
}
constexpr GLenum formatForDepth(std::size_t depth) {
switch(depth) {
default: return GL_FALSE;
case 1: return GL_RED_INTEGER;
case 2: return GL_RG_INTEGER;
case 3: return GL_RGB_INTEGER;
case 4: return GL_RGBA_INTEGER;
}
}
}
template <typename T> void ScanTarget::allocate_buffer(const T &array, GLuint &buffer_name, GLuint &vertex_array_name) {
const auto buffer_size = array.size() * sizeof(array[0]);
test_gl(glGenBuffers, 1, &buffer_name);
test_gl(glBindBuffer, GL_ARRAY_BUFFER, buffer_name);
test_gl(glBufferData, GL_ARRAY_BUFFER, GLsizeiptr(buffer_size), NULL, GL_STREAM_DRAW);
test_gl(glGenVertexArrays, 1, &vertex_array_name);
test_gl(glBindVertexArray, vertex_array_name);
test_gl(glBindBuffer, GL_ARRAY_BUFFER, buffer_name);
}
ScanTarget::ScanTarget(GLuint target_framebuffer, float output_gamma) :
target_framebuffer_(target_framebuffer),
output_gamma_(output_gamma),
unprocessed_line_texture_(LineBufferWidth, LineBufferHeight, UnprocessedLineBufferTextureUnit, GL_NEAREST, false),
full_display_rectangle_(-1.0f, -1.0f, 2.0f, 2.0f) {
set_scan_buffer(scan_buffer_.data(), scan_buffer_.size());
set_line_buffer(line_buffer_.data(), line_metadata_buffer_.data(), line_buffer_.size());
// Allocate space for the scans and lines.
allocate_buffer(scan_buffer_, scan_buffer_name_, scan_vertex_array_);
allocate_buffer(line_buffer_, line_buffer_name_, line_vertex_array_);
// TODO: if this is OpenGL 4.4 or newer, use glBufferStorage rather than glBufferData
// and specify GL_MAP_PERSISTENT_BIT. Then map the buffer now, and let the client
// write straight into it.
test_gl(glGenTextures, 1, &write_area_texture_name_);
test_gl(glBlendFunc, GL_SRC_ALPHA, GL_CONSTANT_COLOR);
test_gl(glBlendColor, 0.4f, 0.4f, 0.4f, 1.0f);
// Establish initial state for is_drawing_to_accumulation_buffer_.
is_drawing_to_accumulation_buffer_.clear();
}
ScanTarget::~ScanTarget() {
perform([=] {
glDeleteBuffers(1, &scan_buffer_name_);
glDeleteTextures(1, &write_area_texture_name_);
glDeleteVertexArrays(1, &scan_vertex_array_);
});
}
void ScanTarget::set_target_framebuffer(GLuint target_framebuffer) {
perform([=] {
target_framebuffer_ = target_framebuffer;
});
}
void ScanTarget::setup_pipeline() {
auto modals = BufferingScanTarget::modals();
const auto data_type_size = Outputs::Display::size_for_data_type(modals.input_data_type);
// Resize the texture only if required.
const size_t required_size = WriteAreaWidth*WriteAreaHeight*data_type_size;
if(required_size != write_area_data_size()) {
write_area_texture_.resize(required_size);
set_write_area(write_area_texture_.data());
}
// Prepare to bind line shaders.
test_gl(glBindVertexArray, line_vertex_array_);
test_gl(glBindBuffer, GL_ARRAY_BUFFER, line_buffer_name_);
// Destroy or create a QAM buffer and shader, if appropriate.
const bool needs_qam_buffer = (modals.display_type == DisplayType::CompositeColour || modals.display_type == DisplayType::SVideo);
if(needs_qam_buffer) {
if(!qam_chroma_texture_) {
qam_chroma_texture_ = std::make_unique<TextureTarget>(LineBufferWidth, LineBufferHeight, QAMChromaTextureUnit, GL_NEAREST, false);
}
qam_separation_shader_ = qam_separation_shader();
enable_vertex_attributes(ShaderType::QAMSeparation, *qam_separation_shader_);
set_uniforms(ShaderType::QAMSeparation, *qam_separation_shader_);
qam_separation_shader_->set_uniform("textureName", GLint(UnprocessedLineBufferTextureUnit - GL_TEXTURE0));
} else {
qam_chroma_texture_.reset();
qam_separation_shader_.reset();
}
// Establish an output shader.
output_shader_ = conversion_shader();
enable_vertex_attributes(ShaderType::Conversion, *output_shader_);
set_uniforms(ShaderType::Conversion, *output_shader_);
output_shader_->set_uniform("origin", modals.visible_area.origin.x, modals.visible_area.origin.y);
output_shader_->set_uniform("size", modals.visible_area.size.width, modals.visible_area.size.height);
output_shader_->set_uniform("textureName", GLint(UnprocessedLineBufferTextureUnit - GL_TEXTURE0));
output_shader_->set_uniform("qamTextureName", GLint(QAMChromaTextureUnit - GL_TEXTURE0));
// Establish an input shader.
input_shader_ = composition_shader();
test_gl(glBindVertexArray, scan_vertex_array_);
test_gl(glBindBuffer, GL_ARRAY_BUFFER, scan_buffer_name_);
enable_vertex_attributes(ShaderType::Composition, *input_shader_);
set_uniforms(ShaderType::Composition, *input_shader_);
input_shader_->set_uniform("textureName", GLint(SourceDataTextureUnit - GL_TEXTURE0));
}
bool ScanTarget::is_soft_display_type() {
const auto display_type = modals().display_type;
return display_type == DisplayType::CompositeColour || display_type == DisplayType::CompositeMonochrome;
}
void ScanTarget::update(int, int output_height) {
// If the GPU is still busy, don't wait; we'll catch it next time.
if(fence_ != nullptr) {
if(glClientWaitSync(fence_, GL_SYNC_FLUSH_COMMANDS_BIT, 0) == GL_TIMEOUT_EXPIRED) {
display_metrics_.announce_draw_status(
lines_submitted_,
std::chrono::high_resolution_clock::now() - line_submission_begin_time_,
false);
return;
}
fence_ = nullptr;
}
// Update the display metrics.
display_metrics_.announce_draw_status(
lines_submitted_,
std::chrono::high_resolution_clock::now() - line_submission_begin_time_,
true);
// Grab the new output list.
perform([=] {
OutputArea area = get_output_area();
// Establish the pipeline if necessary.
const auto new_modals = BufferingScanTarget::new_modals();
const bool did_setup_pipeline = bool(new_modals);
if(did_setup_pipeline) {
setup_pipeline();
}
// Determine the start time of this submission group and the number of lines it will contain.
line_submission_begin_time_ = std::chrono::high_resolution_clock::now();
lines_submitted_ = (area.end.line - area.start.line + line_buffer_.size()) % line_buffer_.size();
// Submit scans; only the new ones need to be communicated.
size_t new_scans = (area.end.scan - area.start.scan + scan_buffer_.size()) % scan_buffer_.size();
if(new_scans) {
test_gl(glBindBuffer, GL_ARRAY_BUFFER, scan_buffer_name_);
// Map only the required portion of the buffer.
const size_t new_scans_size = new_scans * sizeof(Scan);
uint8_t *const destination = static_cast<uint8_t *>(
glMapBufferRange(GL_ARRAY_BUFFER, 0, GLsizeiptr(new_scans_size), GL_MAP_WRITE_BIT | GL_MAP_FLUSH_EXPLICIT_BIT)
);
test_gl_error();
// Copy as a single chunk if possible; otherwise copy in two parts.
if(area.start.scan < area.end.scan) {
memcpy(destination, &scan_buffer_[size_t(area.start.scan)], new_scans_size);
} else {
const size_t first_portion_length = (scan_buffer_.size() - area.start.scan) * sizeof(Scan);
memcpy(destination, &scan_buffer_[area.start.scan], first_portion_length);
memcpy(&destination[first_portion_length], &scan_buffer_[0], new_scans_size - first_portion_length);
}
// Flush and unmap the buffer.
test_gl(glFlushMappedBufferRange, GL_ARRAY_BUFFER, 0, GLsizeiptr(new_scans_size));
test_gl(glUnmapBuffer, GL_ARRAY_BUFFER);
}
// Submit texture.
if(area.start.write_area_x != area.end.write_area_x || area.start.write_area_y != area.end.write_area_y) {
test_gl(glActiveTexture, SourceDataTextureUnit);
test_gl(glBindTexture, GL_TEXTURE_2D, write_area_texture_name_);
// Create storage for the texture if it doesn't yet exist; this was deferred until here
// because the pixel format wasn't initially known.
if(!texture_exists_) {
test_gl(glTexParameteri, GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
test_gl(glTexParameteri, GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
test_gl(glTexParameteri, GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
test_gl(glTexParameteri, GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
test_gl(glTexImage2D,
GL_TEXTURE_2D,
0,
internalFormatForDepth(write_area_data_size()),
WriteAreaWidth,
WriteAreaHeight,
0,
formatForDepth(write_area_data_size()),
GL_UNSIGNED_BYTE,
nullptr);
texture_exists_ = true;
}
if(area.end.write_area_y >= area.start.write_area_y) {
// Submit the direct region from the submit pointer to the read pointer.
test_gl(glTexSubImage2D,
GL_TEXTURE_2D, 0,
0, area.start.write_area_y,
WriteAreaWidth,
1 + area.end.write_area_y - area.start.write_area_y,
formatForDepth(write_area_data_size()),
GL_UNSIGNED_BYTE,
&write_area_texture_[size_t(area.start.write_area_y * WriteAreaWidth) * write_area_data_size()]);
} else {
// The circular buffer wrapped around; submit the data from the read pointer to the end of
// the buffer and from the start of the buffer to the submit pointer.
test_gl(glTexSubImage2D,
GL_TEXTURE_2D, 0,
0, area.start.write_area_y,
WriteAreaWidth,
WriteAreaHeight - area.start.write_area_y,
formatForDepth(write_area_data_size()),
GL_UNSIGNED_BYTE,
&write_area_texture_[size_t(area.start.write_area_y * WriteAreaWidth) * write_area_data_size()]);
test_gl(glTexSubImage2D,
GL_TEXTURE_2D, 0,
0, 0,
WriteAreaWidth,
1 + area.end.write_area_y,
formatForDepth(write_area_data_size()),
GL_UNSIGNED_BYTE,
&write_area_texture_[0]);
}
}
// Push new input to the unprocessed line buffer.
if(new_scans) {
unprocessed_line_texture_.bind_framebuffer();
// Clear newly-touched lines; that is everything from (read+1) to submit.
const auto first_line_to_clear = GLsizei((area.start.line+1)%line_buffer_.size());
const auto final_line_to_clear = GLsizei(area.end.line);
if(first_line_to_clear != final_line_to_clear) {
test_gl(glEnable, GL_SCISSOR_TEST);
// Determine the proper clear colour — this needs to be anything that describes black
// in the input colour encoding at use.
if(modals().input_data_type == InputDataType::Luminance8Phase8) {
// Supply both a zero luminance and a colour-subcarrier-disengaging phase.
test_gl(glClearColor, 0.0f, 1.0f, 0.0f, 0.0f);
} else {
test_gl(glClearColor, 0.0f, 0.0f, 0.0f, 0.0f);
}
if(first_line_to_clear < final_line_to_clear) {
test_gl(glScissor, GLint(0), GLint(first_line_to_clear), unprocessed_line_texture_.get_width(), final_line_to_clear - first_line_to_clear);
test_gl(glClear, GL_COLOR_BUFFER_BIT);
} else {
test_gl(glScissor, GLint(0), GLint(0), unprocessed_line_texture_.get_width(), final_line_to_clear);
test_gl(glClear, GL_COLOR_BUFFER_BIT);
test_gl(glScissor, GLint(0), GLint(first_line_to_clear), unprocessed_line_texture_.get_width(), unprocessed_line_texture_.get_height() - first_line_to_clear);
test_gl(glClear, GL_COLOR_BUFFER_BIT);
}
test_gl(glDisable, GL_SCISSOR_TEST);
}
// Apply new spans. They definitely always go to the first buffer.
test_gl(glBindVertexArray, scan_vertex_array_);
input_shader_->bind();
test_gl(glDrawArraysInstanced, GL_TRIANGLE_STRIP, 0, 4, GLsizei(new_scans));
}
// Logic for reducing resolution: start doing so if the metrics object reports that
// it's a good idea. Go up to a quarter of the requested resolution, subject to
// clamping at each stage. If the output resolution changes, or anything else about
// the output pipeline, just start trying the highest size again.
if(display_metrics_.should_lower_resolution() && is_soft_display_type()) {
resolution_reduction_level_ = std::min(resolution_reduction_level_+1, 4);
}
if(output_height_ != output_height || did_setup_pipeline) {
resolution_reduction_level_ = 1;
output_height_ = output_height;
}
// Ensure the accumulation buffer is properly sized, allowing for the metrics object's
// feelings about whether too high a resolution is being used.
const int framebuffer_height = std::max(output_height / resolution_reduction_level_, std::min(540, output_height));
const int proportional_width = (framebuffer_height * 4) / 3;
const bool did_create_accumulation_texture = !accumulation_texture_ || ( (accumulation_texture_->get_width() != proportional_width || accumulation_texture_->get_height() != framebuffer_height));
// Work with the accumulation_buffer_ potentially starts from here onwards; set its flag.
while(is_drawing_to_accumulation_buffer_.test_and_set());
if(did_create_accumulation_texture) {
LOG("Changed output resolution to " << proportional_width << " by " << framebuffer_height);
display_metrics_.announce_did_resize();
std::unique_ptr<OpenGL::TextureTarget> new_framebuffer(
new TextureTarget(
GLsizei(proportional_width),
GLsizei(framebuffer_height),
AccumulationTextureUnit,
GL_NEAREST,
true));
if(accumulation_texture_) {
new_framebuffer->bind_framebuffer();
test_gl(glClear, GL_COLOR_BUFFER_BIT | GL_STENCIL_BUFFER_BIT);
test_gl(glActiveTexture, AccumulationTextureUnit);
accumulation_texture_->bind_texture();
accumulation_texture_->draw(4.0f / 3.0f);
test_gl(glClear, GL_STENCIL_BUFFER_BIT);
new_framebuffer->bind_texture();
}
accumulation_texture_ = std::move(new_framebuffer);
// In the absence of a way to resize a stencil buffer, just mark
// what's currently present as invalid to avoid an improper clear
// for this frame.
stencil_is_valid_ = false;
}
if(did_setup_pipeline || did_create_accumulation_texture) {
set_sampling_window(proportional_width, framebuffer_height, *output_shader_);
}
// Figure out how many new lines are ready.
auto new_lines = (area.end.line - area.start.line + LineBufferHeight) % LineBufferHeight;
if(new_lines) {
// Prepare to output lines.
test_gl(glBindVertexArray, line_vertex_array_);
// Bind the accumulation framebuffer, unless there's going to be QAM work first.
if(!qam_separation_shader_ || line_metadata_buffer_[area.start.line].is_first_in_frame) {
accumulation_texture_->bind_framebuffer();
output_shader_->bind();
// Enable blending and stenciling.
test_gl(glEnable, GL_BLEND);
test_gl(glEnable, GL_STENCIL_TEST);
}
// Set the proper stencil function regardless.
test_gl(glStencilFunc, GL_EQUAL, 0, GLuint(~0));
test_gl(glStencilOp, GL_KEEP, GL_KEEP, GL_INCR);
// Prepare to upload data that will consitute lines.
test_gl(glBindBuffer, GL_ARRAY_BUFFER, line_buffer_name_);
// Divide spans by which frame they're in.
auto start_line = area.start.line;
while(new_lines) {
uint16_t end_line = (start_line + 1) % LineBufferHeight;
// Find the limit of spans to draw in this cycle.
size_t lines = 1;
while(end_line != area.end.line && !line_metadata_buffer_[end_line].is_first_in_frame) {
end_line = (end_line + 1) % LineBufferHeight;
++lines;
}
// If this is start-of-frame, clear any untouched pixels and flush the stencil buffer
if(line_metadata_buffer_[start_line].is_first_in_frame) {
if(stencil_is_valid_ && line_metadata_buffer_[start_line].previous_frame_was_complete) {
full_display_rectangle_.draw(0.0f, 0.0f, 0.0f);
}
stencil_is_valid_ = true;
test_gl(glClear, GL_STENCIL_BUFFER_BIT);
// Rebind the program for span output.
test_gl(glBindVertexArray, line_vertex_array_);
if(!qam_separation_shader_) {
output_shader_->bind();
}
}
// Upload.
const auto buffer_size = lines * sizeof(Line);
if(!end_line || end_line > start_line) {
test_gl(glBufferSubData, GL_ARRAY_BUFFER, 0, GLsizeiptr(buffer_size), &line_buffer_[start_line]);
} else {
uint8_t *destination = static_cast<uint8_t *>(
glMapBufferRange(GL_ARRAY_BUFFER, 0, GLsizeiptr(buffer_size), GL_MAP_WRITE_BIT | GL_MAP_FLUSH_EXPLICIT_BIT)
);
assert(destination);
test_gl_error();
const size_t buffer_length = line_buffer_.size() * sizeof(Line);
const size_t start_position = start_line * sizeof(Line);
memcpy(&destination[0], &line_buffer_[start_line], buffer_length - start_position);
memcpy(&destination[buffer_length - start_position], &line_buffer_[0], end_line * sizeof(Line));
test_gl(glFlushMappedBufferRange, GL_ARRAY_BUFFER, 0, GLsizeiptr(buffer_size));
test_gl(glUnmapBuffer, GL_ARRAY_BUFFER);
}
// Produce colour information, if required.
if(qam_separation_shader_) {
qam_separation_shader_->bind();
qam_chroma_texture_->bind_framebuffer();
test_gl(glClear, GL_COLOR_BUFFER_BIT); // TODO: this is here as a hint that the old framebuffer doesn't need reloading;
// test whether that's a valid optimisation on desktop OpenGL.
test_gl(glDisable, GL_BLEND);
test_gl(glDisable, GL_STENCIL_TEST);
test_gl(glDrawArraysInstanced, GL_TRIANGLE_STRIP, 0, 4, GLsizei(lines));
accumulation_texture_->bind_framebuffer();
output_shader_->bind();
test_gl(glEnable, GL_BLEND);
test_gl(glEnable, GL_STENCIL_TEST);
}
// Render to the output.
test_gl(glDrawArraysInstanced, GL_TRIANGLE_STRIP, 0, 4, GLsizei(lines));
start_line = end_line;
new_lines -= lines;
}
// Disable blending and the stencil test again.
test_gl(glDisable, GL_STENCIL_TEST);
test_gl(glDisable, GL_BLEND);
}
// That's it for operations affecting the accumulation buffer.
is_drawing_to_accumulation_buffer_.clear();
// Grab a fence sync object to avoid busy waiting upon the next extry into this
// function, and reset the is_updating_ flag.
fence_ = glFenceSync(GL_SYNC_GPU_COMMANDS_COMPLETE, 0);
complete_output_area(area);
});
}
void ScanTarget::draw(int output_width, int output_height) {
while(is_drawing_to_accumulation_buffer_.test_and_set(std::memory_order_acquire));
if(accumulation_texture_) {
// Copy the accumulation texture to the target.
test_gl(glBindFramebuffer, GL_FRAMEBUFFER, target_framebuffer_);
test_gl(glViewport, 0, 0, (GLsizei)output_width, (GLsizei)output_height);
test_gl(glClearColor, 0.0f, 0.0f, 0.0f, 0.0f);
test_gl(glClear, GL_COLOR_BUFFER_BIT);
accumulation_texture_->bind_texture();
accumulation_texture_->draw(float(output_width) / float(output_height), 4.0f / 255.0f);
}
is_drawing_to_accumulation_buffer_.clear(std::memory_order_release);
}