1
0
mirror of https://github.com/TomHarte/CLK.git synced 2025-01-14 13:33:42 +00:00

325 lines
9.0 KiB
C++

//
// AppleGCR.cpp
// Clock Signal
//
// Created by Thomas Harte on 21/04/2018.
// Copyright 2018 Thomas Harte. All rights reserved.
//
#include "Encoder.hpp"
namespace {
const uint8_t five_and_three_mapping[] = {
0xab, 0xad, 0xae, 0xaf, 0xb5, 0xb6, 0xb7, 0xba,
0xbb, 0xbd, 0xbe, 0xbf, 0xd6, 0xd7, 0xda, 0xdb,
0xdd, 0xde, 0xdf, 0xea, 0xeb, 0xed, 0xee, 0xef,
0xf5, 0xf6, 0xf7, 0xfa, 0xfb, 0xfd, 0xfe, 0xff
};
const uint8_t six_and_two_mapping[] = {
0x96, 0x97, 0x9a, 0x9b, 0x9d, 0x9e, 0x9f, 0xa6,
0xa7, 0xab, 0xac, 0xad, 0xae, 0xaf, 0xb2, 0xb3,
0xb4, 0xb5, 0xb6, 0xb7, 0xb9, 0xba, 0xbb, 0xbc,
0xbd, 0xbe, 0xbf, 0xcb, 0xcd, 0xce, 0xcf, 0xd3,
0xd6, 0xd7, 0xd9, 0xda, 0xdb, 0xdc, 0xdd, 0xde,
0xdf, 0xe5, 0xe6, 0xe7, 0xe9, 0xea, 0xeb, 0xec,
0xed, 0xee, 0xef, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6,
0xf7, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xfe, 0xff
};
/*!
Produces a PCM segment containing @c length sync bytes, each aligned to the beginning of
a @c bit_size -sized window.
*/
Storage::Disk::PCMSegment sync(int length, int bit_size) {
Storage::Disk::PCMSegment segment;
// Reserve sufficient storage.
segment.data.reserve(size_t(length * bit_size));
// Write patters of 0xff padded with 0s to the selected bit size.
while(length--) {
int c = 8;
while(c--)
segment.data.push_back(true);
c = bit_size - 8;
while(c--)
segment.data.push_back(false);
}
return segment;
}
}
using namespace Storage::Encodings;
Storage::Disk::PCMSegment AppleGCR::six_and_two_sync(int length) {
return sync(length, 10);
}
Storage::Disk::PCMSegment AppleGCR::five_and_three_sync(int length) {
return sync(length, 9);
}
Storage::Disk::PCMSegment AppleGCR::AppleII::header(uint8_t volume, uint8_t track, uint8_t sector) {
const uint8_t checksum = volume ^ track ^ sector;
// Apple headers are encoded using an FM-esque scheme rather than 6 and 2, or 5 and 3.
std::vector<uint8_t> data(14);
data[0] = header_prologue[0];
data[1] = header_prologue[1];
data[2] = header_prologue[2];
#define WriteFM(index, value) \
data[index+0] = uint8_t(((value) >> 1) | 0xaa); \
data[index+1] = uint8_t((value) | 0xaa); \
WriteFM(3, volume);
WriteFM(5, track);
WriteFM(7, sector);
WriteFM(9, checksum);
#undef WriteFM
data[11] = epilogue[0];
data[12] = epilogue[1];
data[13] = epilogue[2];
return Storage::Disk::PCMSegment(data);
}
Storage::Disk::PCMSegment AppleGCR::five_and_three_data(const uint8_t *source) {
std::vector<uint8_t> data(410 + 7);
data[0] = data_prologue[0];
data[1] = data_prologue[1];
data[2] = data_prologue[2];
data[414] = epilogue[0];
data[411] = epilogue[1];
data[416] = epilogue[2];
// TODO: encode.
(void)source;
// std::size_t source_pointer = 0;
// std::size_t destination_pointer = 3;
// while(source_pointer < 255) {
// encode_five_and_three_block(&segment.data[destination_pointer], &source[source_pointer]);
//
// source_pointer += 5;
// destination_pointer += 8;
// }
// Map five-bit values up to full bytes.
for(std::size_t c = 0; c < 410; ++c) {
data[3 + c] = five_and_three_mapping[data[3 + c]];
}
return Storage::Disk::PCMSegment(data);
}
// MARK: - Apple II-specific encoding.
Storage::Disk::PCMSegment AppleGCR::AppleII::six_and_two_data(const uint8_t *source) {
std::vector<uint8_t> data(349);
// Add the prologue and epilogue.
data[0] = data_prologue[0];
data[1] = data_prologue[1];
data[2] = data_prologue[2];
data[346] = epilogue[0];
data[347] = epilogue[1];
data[348] = epilogue[2];
// Fill in byte values: the first 86 bytes contain shuffled
// and combined copies of the bottom two bits of the sector
// contents; the 256 bytes afterwards are the remaining
// six bits.
const uint8_t bit_reverse[] = {0, 2, 1, 3};
for(std::size_t c = 0; c < 84; ++c) {
data[3 + c] =
uint8_t(
bit_reverse[source[c]&3] |
(bit_reverse[source[c + 86]&3] << 2) |
(bit_reverse[source[c + 172]&3] << 4)
);
}
data[87] =
uint8_t(
(bit_reverse[source[84]&3] << 0) |
(bit_reverse[source[170]&3] << 2)
);
data[88] =
uint8_t(
(bit_reverse[source[85]&3] << 0) |
(bit_reverse[source[171]&3] << 2)
);
for(std::size_t c = 0; c < 256; ++c) {
data[3 + 86 + c] = source[c] >> 2;
}
// Exclusive OR each byte with the one before it.
data[345] = data[344];
std::size_t location = 344;
while(location > 3) {
data[location] ^= data[location-1];
--location;
}
// Map six-bit values up to full bytes.
for(std::size_t c = 0; c < 343; ++c) {
data[3 + c] = six_and_two_mapping[data[3 + c]];
}
return Storage::Disk::PCMSegment(data);
}
// MARK: - Macintosh-specific encoding.
AppleGCR::Macintosh::SectorSpan AppleGCR::Macintosh::sectors_in_track(int track) {
// A Macintosh disk has 80 tracks, divided into 5 16-track zones. The outermost
// zone has 12 sectors/track, the next one in has only 11 sectors/track, and
// that arithmetic progression continues.
//
// (... and therefore the elementary sum of an arithmetic progression formula
// is deployed below)
const int zone = track >> 4;
const int prior_sectors = 16 * zone * (12 + (12 - (zone - 1))) / 2;
AppleGCR::Macintosh::SectorSpan result;
result.length = 12 - zone;
result.start = prior_sectors + (track & 15) * result.length;
return result;
}
Storage::Disk::PCMSegment AppleGCR::Macintosh::header(uint8_t type, uint8_t track, uint8_t sector, bool side_two) {
std::vector<uint8_t> data(11);
// The standard prologue.
data[0] = header_prologue[0];
data[1] = header_prologue[1];
data[2] = header_prologue[2];
// There then follows:
//
// 1) the low six bits of the track number;
// 2) the sector number;
// 3) the high five bits of the track number plus a side flag;
// 4) the type; and
// 5) the XOR of all those fields.
//
// (all two-and-six encoded).
data[3] = track&0x3f;
data[4] = sector;
data[5] = (side_two ? 0x20 : 0x00) | ((track >> 6) & 0x1f);
data[6] = type;
data[7] = data[3] ^ data[4] ^ data[5] ^ data[6];
for(size_t c = 3; c < 8; ++c) {
data[c] = six_and_two_mapping[data[c]];
}
// Then the standard epilogue.
data[8] = epilogue[0];
data[9] = epilogue[1];
data[10] = epilogue[2];
return Storage::Disk::PCMSegment(data);
}
Storage::Disk::PCMSegment AppleGCR::Macintosh::data(uint8_t sector, const uint8_t *source) {
std::vector<uint8_t> output(710);
int checksum[3] = {0, 0, 0};
// Write prologue.
output[0] = data_prologue[0];
output[1] = data_prologue[1];
output[2] = data_prologue[2];
// Add the sector number.
output[3] = six_and_two_mapping[sector & 0x3f];
// The Macintosh has a similar checksum-as-it-goes approach to encoding
// to the Apple II, but works entirely differently. Each three bytes of
// input are individually encoded to four GCR bytes, their output values
// being a (mutating) function of the current checksum.
//
// Address references below, such as 'Cf. 18FA4' are to addresses in the
// Macintosh Plus ROM.
for(size_t c = 0; c < 175; ++c) {
uint8_t values[3];
// The low byte of the checksum is rotated left one position; Cf. 18FA4.
checksum[0] = (checksum[0] << 1) | (checksum[0] >> 7);
// See 18FBA and 18FBC: an ADDX (with the carry left over from the roll)
// and an EOR act to update the checksum and generate the next output.
values[0] = uint8_t(*source ^ checksum[0]);
checksum[2] += *source + (checksum[0] >> 8);
++source;
// As above, but now 18FD0 and 18FD2.
values[1] = uint8_t(*source ^ checksum[2]);
checksum[1] += *source + (checksum[2] >> 8);
++source;
// Avoid a potential read overrun, but otherwise continue as before.
if(c == 174) {
values[2] = 0;
} else {
values[2] = uint8_t(*source ^ checksum[1]);
checksum[0] += *source + (checksum[1] >> 8);
++source;
}
// Throw away the top bits of checksum[1] and checksum[2]; the original
// routine is byte centric, the longer ints here are just to retain the
// carry after each add transientliy.
checksum[0] &= 0xff;
checksum[1] &= 0xff;
checksum[2] &= 0xff;
// Having mutated those three bytes according to the current checksum,
// and the checksum according to those bytes, run them through the
// GCR conversion table.
output[4 + c*4 + 1] = six_and_two_mapping[values[0] & 0x3f];
output[4 + c*4 + 2] = six_and_two_mapping[values[1] & 0x3f];
output[4 + c*4 + 3] = six_and_two_mapping[values[2] & 0x3f];
output[4 + c*4 + 0] = six_and_two_mapping[
((values[0] >> 2) & 0x30) |
((values[1] >> 4) & 0x0c) |
((values[2] >> 6) & 0x03)
];
}
// Also write the checksum.
//
// Caveat: the first byte written here will overwrite the final byte that
// was deposited in the loop above. That's deliberate. The final byte from
// the loop above doesn't contain any useful content, and isn't actually
// included on disk.
output[704] = six_and_two_mapping[checksum[2] & 0x3f];
output[705] = six_and_two_mapping[checksum[1] & 0x3f];
output[706] = six_and_two_mapping[checksum[0] & 0x3f];
output[703] = six_and_two_mapping[
((checksum[2] >> 2) & 0x30) |
((checksum[1] >> 4) & 0x0c) |
((checksum[0] >> 6) & 0x03)
];
// Write epilogue.
output[707] = epilogue[0];
output[708] = epilogue[1];
output[709] = epilogue[2];
return Storage::Disk::PCMSegment(output);
}