mirror of
https://github.com/TomHarte/CLK.git
synced 2025-01-13 22:32:03 +00:00
3b2e97e77c
All of which pass. Grrr.
232 lines
6.6 KiB
Plaintext
232 lines
6.6 KiB
Plaintext
//
|
|
// IIgsMemoryMapTests.mm
|
|
// Clock SignalTests
|
|
//
|
|
// Created by Thomas Harte on 25/10/2020.
|
|
// Copyright © 2020 Thomas Harte. All rights reserved.
|
|
//
|
|
|
|
#import <XCTest/XCTest.h>
|
|
|
|
#include "../../../Machines/Apple/AppleIIgs/MemoryMap.hpp"
|
|
|
|
namespace {
|
|
using MemoryMap = Apple::IIgs::MemoryMap;
|
|
}
|
|
|
|
@interface IIgsMemoryMapTests : XCTestCase
|
|
@end
|
|
|
|
@implementation IIgsMemoryMapTests {
|
|
MemoryMap _memoryMap;
|
|
std::vector<uint8_t> _ram;
|
|
std::vector<uint8_t> _rom;
|
|
}
|
|
|
|
- (void)setUp {
|
|
_ram.resize((128 + 8 * 1024) * 1024);
|
|
_rom.resize(256 * 1024);
|
|
_memoryMap.set_storage(_ram, _rom);
|
|
|
|
// If this isn't the first test run, RAM and ROM may have old values.
|
|
// Initialise to a known state.
|
|
memset(_ram.data(), 0, _ram.size());
|
|
memset(_rom.data(), 0, _rom.size());
|
|
}
|
|
|
|
- (void)write:(uint8_t)value address:(uint32_t)address {
|
|
const auto ®ion = MemoryMapRegion(_memoryMap, address);
|
|
XCTAssertFalse(region.flags & MemoryMap::Region::IsIO);
|
|
MemoryMapWrite(_memoryMap, region, address, &value);
|
|
}
|
|
|
|
- (uint8_t)readAddress:(uint32_t)address {
|
|
const auto ®ion = MemoryMapRegion(_memoryMap, address);
|
|
uint8_t value;
|
|
MemoryMapRead(region, address, &value);
|
|
return value;
|
|
}
|
|
|
|
- (void)testAllRAM {
|
|
// Disable IO/LC 'shadowing', to give linear memory up to bank $80.
|
|
_memoryMap.set_shadow_register(0x5f);
|
|
|
|
// Fill memory via the map.
|
|
for(int address = 0x00'0000; address < 0x80'0000; ++address) {
|
|
const uint8_t value = uint8_t(address ^ (address >> 8) ^ (address >> 16));
|
|
[self write:value address:address];
|
|
}
|
|
|
|
// Test by direct access.
|
|
for(int address = 0x00'0000; address < 0x80'0000; ++address) {
|
|
const uint8_t value = uint8_t(address ^ (address >> 8) ^ (address >> 16));
|
|
XCTAssertEqual([self readAddress:address], value);
|
|
}
|
|
}
|
|
|
|
- (void)testROMIsReadonly {
|
|
_rom[0] = 0xc0;
|
|
|
|
// Test that ROM can be read in the correct location.
|
|
XCTAssertEqual([self readAddress:0xfc'0000], 0xc0);
|
|
|
|
// Try writing to it, and check that nothing happened.
|
|
[self write:0xfc address:0xfc'0000];
|
|
XCTAssertEqual(_rom[0], 0xc0);
|
|
}
|
|
|
|
/// Tests that the same portion of ROM is visible in banks $00, $01, $e0 and $e1.
|
|
- (void)testROMVisibility {
|
|
_rom.back() = 0xa8;
|
|
auto test_bank = [self](uint32_t bank) {
|
|
const uint32_t address = bank | 0xffff;
|
|
XCTAssertEqual([self readAddress:address], 0xa8);
|
|
};
|
|
|
|
test_bank(0x00'0000);
|
|
test_bank(0x01'0000);
|
|
test_bank(0xe0'0000);
|
|
test_bank(0xe1'0000);
|
|
}
|
|
|
|
/// Tests that writes to $00:$0400 and to $01:$0400 are subsequently visible at $e0:$0400 and $e1:$0400.
|
|
- (void)testShadowing {
|
|
[self write:0xab address:0x00'0400];
|
|
[self write:0xcd address:0x01'0400];
|
|
XCTAssertEqual([self readAddress:0xe0'0400], 0xab);
|
|
XCTAssertEqual([self readAddress:0xe1'0400], 0xcd);
|
|
}
|
|
|
|
/// Tests that a write to bank $00 which via the auxiliary switches is redirected to bank $01 is then
|
|
/// mirrored to $e1.
|
|
- (void)testAuxiliaryShadowing {
|
|
// Select the alternate text page 1.
|
|
_memoryMap.access(0xc001, false); // Set 80STORE.
|
|
_memoryMap.access(0xc055, false); // Set PAGE2.
|
|
// These two things together should enable auxiliary memory for text page 1.
|
|
// No, really.
|
|
|
|
// Enable shadowing of text page 1.
|
|
_memoryMap.set_shadow_register(0x00);
|
|
|
|
// Establish a different value in bank $e1, then write
|
|
// to bank $00 and check banks $01 and $e1.
|
|
[self write: 0xcb address:0xe1'0400];
|
|
[self write: 0xde address:0x00'0400];
|
|
|
|
XCTAssertEqual([self readAddress:0xe1'0400], 0xde);
|
|
XCTAssertEqual([self readAddress:0x01'0400], 0xde);
|
|
|
|
// Reset the $e1 page version and check all three detinations.
|
|
[self write: 0xcb address:0xe1'0400];
|
|
|
|
XCTAssertEqual([self readAddress:0xe1'0400], 0xcb);
|
|
XCTAssertEqual([self readAddress:0x00'0400], 0xde);
|
|
XCTAssertEqual([self readAddress:0x01'0400], 0xde);
|
|
}
|
|
|
|
- (void)testE0E1RAMConsistent {
|
|
// Do some random language card paging, to hit set_language_card.
|
|
_memoryMap.set_state_register(0x00);
|
|
_memoryMap.set_state_register(0xff);
|
|
|
|
[self write: 0x12 address:0xe0'0000];
|
|
[self write: 0x34 address:0xe1'0000];
|
|
|
|
XCTAssertEqual(_ram[_ram.size() - 128*1024], 0x12);
|
|
XCTAssertEqual(_ram[_ram.size() - 64*1024], 0x34);
|
|
}
|
|
|
|
- (void)testAuxiliarySwitches {
|
|
// Inhibit IO/LC 'shadowing'.
|
|
_memoryMap.set_shadow_register(0x40);
|
|
|
|
// Check that all writes and reads currently occur to main RAM.
|
|
XCTAssertEqual(_memoryMap.get_state_register() & 0xf0, 0x00);
|
|
for(int c = 0; c < 65536; c++) {
|
|
const uint8_t value = c ^ (c >> 8);
|
|
[self write:value address:c];
|
|
XCTAssertEqual(_ram[c], value);
|
|
}
|
|
|
|
// Reset.
|
|
memset(_ram.data(), 0, 128*1024);
|
|
|
|
// Set writing to auxiliary memory.
|
|
// Reading should still be from main.
|
|
_memoryMap.access(0xc005, false);
|
|
XCTAssertEqual(_memoryMap.get_state_register() & 0xf0, 0x10);
|
|
for(int c = 0x0200; c < 0xc000; c++) {
|
|
const uint8_t value = c ^ (c >> 8);
|
|
[self write:value address:c];
|
|
XCTAssertEqual(_ram[c + 64*1024], value);
|
|
XCTAssertEqual([self readAddress:c], 0);
|
|
}
|
|
|
|
// Reset.
|
|
memset(_ram.data(), 0, 128*1024);
|
|
|
|
// Switch reading and writing.
|
|
_memoryMap.access(0xc004, false);
|
|
_memoryMap.access(0xc003, false);
|
|
XCTAssertEqual(_memoryMap.get_state_register() & 0xf0, 0x20);
|
|
for(int c = 0x0200; c < 0xc000; c++) {
|
|
const uint8_t value = c ^ (c >> 8);
|
|
[self write:value address:c];
|
|
XCTAssertEqual(_ram[c], value);
|
|
XCTAssertEqual([self readAddress:c], 0);
|
|
}
|
|
|
|
// Reset.
|
|
memset(_ram.data(), 0, 128*1024);
|
|
|
|
// Test main zero page.
|
|
for(int c = 0x0000; c < 0x0200; c++) {
|
|
const uint8_t value = c ^ (c >> 8);
|
|
[self write:value address:c];
|
|
XCTAssertEqual(_ram[c], value);
|
|
XCTAssertEqual([self readAddress:c], value);
|
|
}
|
|
|
|
// Reset.
|
|
memset(_ram.data(), 0, 128*1024);
|
|
|
|
// Enable the alternate zero page.
|
|
_memoryMap.access(0xc009, false);
|
|
XCTAssertEqual(_memoryMap.get_state_register() & 0xf0, 0xa0);
|
|
for(int c = 0x0000; c < 0x0200; c++) {
|
|
const uint8_t value = c ^ (c >> 8);
|
|
[self write:value address:c];
|
|
XCTAssertEqual(_ram[c + 64*1024], value);
|
|
XCTAssertEqual([self readAddress:c], value);
|
|
}
|
|
|
|
// Reset.
|
|
memset(_ram.data(), 0, 128*1024);
|
|
|
|
// Enable 80STORE and PAGE2 and test for access to the second video page.
|
|
_memoryMap.access(0xc001, false);
|
|
_memoryMap.access(0xc055, true);
|
|
XCTAssertEqual(_memoryMap.get_state_register() & 0xf0, 0xe0);
|
|
for(int c = 0x0400; c < 0x0800; c++) {
|
|
const uint8_t value = c ^ (c >> 8);
|
|
[self write:value address:c];
|
|
XCTAssertEqual(_ram[c + 64*1024], value);
|
|
XCTAssertEqual([self readAddress:c], value);
|
|
}
|
|
|
|
// Reset.
|
|
memset(_ram.data(), 0, 128*1024);
|
|
|
|
// Enable HIRES and test for access to the second video page.
|
|
_memoryMap.access(0xc057, true);
|
|
for(int c = 0x2000; c < 0x4000; c++) {
|
|
const uint8_t value = c ^ (c >> 8);
|
|
[self write:value address:c];
|
|
XCTAssertEqual(_ram[c + 64*1024], value);
|
|
XCTAssertEqual([self readAddress:c], value);
|
|
}
|
|
}
|
|
|
|
@end
|