1
0
mirror of https://github.com/TomHarte/CLK.git synced 2024-07-07 23:29:06 +00:00
CLK/InstructionSets/M50740/Executor.cpp

344 lines
10 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

//
// Executor.hpp
// Clock Signal
//
// Created by Thomas Harte on 16/1/21.
// Copyright © 2021 Thomas Harte. All rights reserved.
//
#include "Executor.hpp"
#include <algorithm>
#include <cassert>
#include <cstring>
using namespace InstructionSet::M50740;
Executor::Executor() {
// Cut down the list of all generated performers to those the processor actually uses, and install that
// for future referencing by action_for.
Decoder decoder;
for(size_t c = 0; c < 256; c++) {
const auto instruction = decoder.instrucion_for_opcode(uint8_t(c));
// Treat invalid as NOP, because I've got to do _something_.
if(instruction.operation == Operation::Invalid) {
performers_[c] = performer_lookup_.performer(Operation::NOP, instruction.addressing_mode);
} else {
performers_[c] = performer_lookup_.performer(instruction.operation, instruction.addressing_mode);
}
}
}
void Executor::set_rom(const std::vector<uint8_t> &rom) {
// Copy into place, and reset.
const auto length = std::min(size_t(0x1000), rom.size());
memcpy(&memory_[0x2000 - length], rom.data(), length);
reset();
// TEMPORARY: just to test initial wiring.
for(int c = 0; c < 130; c++) {
run_to_branch();
}
}
void Executor::reset() {
// Just jump to the reset vector.
set_program_counter(uint16_t(memory_[0x1ffe] | (memory_[0x1fff] << 8)));
}
uint8_t Executor::read(uint16_t address) {
address &= 0x1fff;
switch(address) {
default: return memory_[address];
// TODO: external IO ports.
// "Port R"; sixteen four-bit ports
case 0xd0: case 0xd1: case 0xd2: case 0xd3: case 0xd4: case 0xd5: case 0xd6: case 0xd7:
case 0xd8: case 0xd9: case 0xda: case 0xdb: case 0xdc: case 0xdd: case 0xde: case 0xdf:
printf("TODO: Port R\n");
return 0xff;
// Ports P0P3.
case 0xe0: case 0xe1:
case 0xe2: case 0xe3:
case 0xe4: case 0xe5:
case 0xe8: case 0xe9:
printf("TODO: Ports P0P3\n");
return 0xff;
// Timers.
case 0xf9: case 0xfa: case 0xfb: case 0xfc: case 0xfd: case 0xfe: case 0xff:
printf("TODO: Timers\n");
return 0xff;
}
}
void Executor::write(uint16_t address, uint8_t value) {
address &= 0x1fff;
if(address < 0x60) {
memory_[address] = value;
return;
}
// TODO: all external IO ports.
}
void Executor::push(uint8_t value) {
write(s_, value);
--s_;
}
uint8_t Executor::pull() {
++s_;
return read(s_);
}
void Executor::set_flags(uint8_t flags) {
negative_result_ = flags;
overflow_result_ = uint8_t(flags << 1);
index_mode_ = flags & 0x20;
decimal_mode_ = flags & 0x08;
interrupt_disable_ = flags & 0x04;
zero_result_ = !(flags & 0x02);
carry_flag_ = flags & 0x01;
}
uint8_t Executor::flags() {
return
(negative_result_ & 0x80) |
((overflow_result_ & 0x80) >> 1) |
(index_mode_ ? 0x20 : 0x00) |
(decimal_mode_ ? 0x08 : 0x00) |
interrupt_disable_ |
(zero_result_ ? 0x00 : 0x02) |
carry_flag_;
}
template <Operation operation, AddressingMode addressing_mode> void Executor::perform() {
// Deal with all modes that don't access memory up here;
// those that access memory will go through a slightly longer
// sequence below that wraps the address and checks whether
// a write is valid [if required].
int address;
#define next8() memory_[(program_counter_ + 1) & 0x1fff]
#define next16() (memory_[(program_counter_ + 1) & 0x1fff] | (memory_[(program_counter_ + 2) & 0x1fff] << 8))
printf("%04x\t%02x\t%d %d\t[x:%02x s:%02x]\n", program_counter_ & 0x1fff, memory_[program_counter_ & 0x1fff], int(operation), int(addressing_mode), x_, s_);
// Underlying assumption below: the instruction stream will never
// overlap with IO ports.
switch(addressing_mode) {
// Addressing modes with no further memory access.
case AddressingMode::Implied:
perform<operation>(nullptr);
++program_counter_;
return;
case AddressingMode::Accumulator:
perform<operation>(&a_);
++program_counter_;
return;
case AddressingMode::Immediate:
perform<operation>(&next8());
program_counter_ += 2;
return;
// Special-purpose addressing modes.
case AddressingMode::Relative:
address = program_counter_ + 1 + size(addressing_mode) + int8_t(next8());
break;
case AddressingMode::SpecialPage: address = 0x1f00 | next8(); break;
case AddressingMode::ImmediateZeroPage:
// LDM only...
write(memory_[(program_counter_+2)&0x1fff], memory_[(program_counter_+1)&0x1fff]);
program_counter_ += 1 + size(addressing_mode);
return;
/* TODO:
AccumulatorRelative
ZeroPageRelative
... which are BBC/BBS-exclusive.
*/
// Addressing modes with a memory access.
case AddressingMode::Absolute: address = next16(); break;
case AddressingMode::AbsoluteX: address = next16() + x_; break;
case AddressingMode::AbsoluteY: address = next16() + y_; break;
case AddressingMode::ZeroPage: address = next8(); break;
case AddressingMode::ZeroPageX: address = (next8() + x_) & 0xff; break;
case AddressingMode::ZeroPageY: address = (next8() + x_) & 0xff; break;
case AddressingMode::ZeroPageIndirect:
address = next8();
address = memory_[address] | (memory_[(address + 1) & 0xff] << 8);
break;
case AddressingMode::XIndirect:
address = (next8() + x_) & 0xff;
address = memory_[address] | (memory_[(address + 1)&0xff] << 8);
break;
case AddressingMode::IndirectY:
address = (memory_[next8()] | (memory_[(next8()+1)&0xff] << 8)) + y_;
break;
case AddressingMode::AbsoluteIndirect:
address = next16();
address = memory_[address] | (memory_[(address + 1) & 0x1fff] << 8);
break;
default:
assert(false);
}
#undef next16
#undef next8
program_counter_ += 1 + size(addressing_mode);
// Check for a branch; those don't go through the memory accesses below.
switch(operation) {
case Operation::BRA: case Operation::JMP:
set_program_counter(uint16_t(address));
return;
case Operation::JSR: {
const auto return_address = program_counter_ - 1;
push(uint8_t(return_address >> 8));
push(uint8_t(return_address & 0xff));
set_program_counter(uint16_t(address));
} return;
case Operation::BPL: if(!(negative_result_&0x80)) set_program_counter(uint16_t(address)); return;
case Operation::BMI: if(negative_result_&0x80) set_program_counter(uint16_t(address)); return;
case Operation::BEQ: if(!zero_result_) set_program_counter(uint16_t(address)); return;
case Operation::BNE: if(zero_result_) set_program_counter(uint16_t(address)); return;
case Operation::BCS: if(carry_flag_) set_program_counter(uint16_t(address)); return;
case Operation::BCC: if(!carry_flag_) set_program_counter(uint16_t(address)); return;
case Operation::BVS: if(overflow_result_ & 0x80) set_program_counter(uint16_t(address)); return;
case Operation::BVC: if(!(overflow_result_ & 0x80)) set_program_counter(uint16_t(address)); return;
/* TODO: BBC, BBS. */
default: break;
}
assert(access_type(operation) != AccessType::None);
if constexpr(access_type(operation) == AccessType::Read) {
uint8_t source = read(uint16_t(address));
perform<operation>(&source);
return;
}
uint8_t value;
if constexpr(access_type(operation) == AccessType::ReadModifyWrite) {
value = read(uint16_t(address));
} else {
value = 0xff;
}
perform<operation>(&value);
write(uint16_t(address), value);
}
template <Operation operation> void Executor::perform(uint8_t *operand [[maybe_unused]]) {
#define set_nz(a) negative_result_ = zero_result_ = (a)
switch(operation) {
case Operation::LDA: set_nz(a_ = *operand); break;
case Operation::LDX: set_nz(x_ = *operand); break;
case Operation::LDY: set_nz(y_ = *operand); break;
case Operation::STA: *operand = a_; break;
case Operation::STX: *operand = x_; break;
case Operation::STY: *operand = y_; break;
case Operation::TXA: set_nz(a_ = x_); break;
case Operation::TYA: set_nz(a_ = y_); break;
case Operation::TXS: s_ = x_; break;
case Operation::TAX: set_nz(x_ = a_); break;
case Operation::TAY: set_nz(y_ = a_); break;
case Operation::TSX: set_nz(x_ = s_); break;
case Operation::SEB0: case Operation::SEB1: case Operation::SEB2: case Operation::SEB3:
case Operation::SEB4: case Operation::SEB5: case Operation::SEB6: case Operation::SEB7:
*operand |= 1 << (int(operation) - int(Operation::SEB0));
break;
case Operation::CLB0: case Operation::CLB1: case Operation::CLB2: case Operation::CLB3:
case Operation::CLB4: case Operation::CLB5: case Operation::CLB6: case Operation::CLB7:
*operand &= ~(1 << (int(operation) - int(Operation::CLB0)));
break;
case Operation::CLI: interrupt_disable_ = 0x00; break;
case Operation::SEI: interrupt_disable_ = 0x04; break;
case Operation::CLT: index_mode_ = false; break;
case Operation::SET: index_mode_ = true; break;
case Operation::CLD: decimal_mode_ = false; break;
case Operation::SED: decimal_mode_ = true; break;
case Operation::CLC: carry_flag_ = 0; break;
case Operation::SEC: carry_flag_ = 1; break;
case Operation::CLV: overflow_result_ = 0; break;
case Operation::DEX: --x_; set_nz(x_); break;
case Operation::INX: ++x_; set_nz(x_); break;
case Operation::DEY: --y_; set_nz(y_); break;
case Operation::INY: ++y_; set_nz(y_); break;
case Operation::DEC: --*operand; set_nz(*operand); break;
case Operation::INC: ++*operand; set_nz(*operand); break;
case Operation::RTS: {
uint16_t target = pull();
target |= pull() << 8;
set_program_counter(target+1);
--program_counter_; // To undo the unavoidable increment
// after exiting from here.
} break;
case Operation::RTI: {
set_flags(pull());
uint16_t target = pull();
target |= pull() << 8;
set_program_counter(target);
--program_counter_; // To undo the unavoidable increment
// after exiting from here.
} break;
case Operation::ORA: set_nz(a_ |= *operand); break;
case Operation::AND: set_nz(a_ &= *operand); break;
case Operation::EOR: set_nz(a_ ^= *operand); break;
/*
Operations affected by the index mode flag: ADC, AND, CMP, EOR, LDA, ORA, and SBC.
*/
/*
Already removed from the instruction stream:
* all branches and jumps;
* LDM.
*/
default:
printf("Unimplemented operation: %d\n", int(operation));
assert(false);
}
#undef set_nz
}
void Executor::set_program_counter(uint16_t address) {
printf("--- %04x ---\n", (address & 0x1fff) - 0x1000);
program_counter_ = address;
CachingExecutor::set_program_counter(address);
}